摘要
Correlated radio-optical variations on intraday timescales have been observed (e.g. in BLO 0716+714) and such radio intraday variability is suggested to have an intrinsic origin. Recently, multi-wavelength observations, simultaneous at radio, mm-submm, optical and hard X-rays, of 0716+714, show that during a period of intraday/interday variations at radio and mm wavelengths, the apparent brightness temperature of the source exceeded the Compton-limit (-10^12 K) by 2-4 orders of magnitude, but no Compton catastrophe (or no high luminosity of inverse-Compton radiation) was detected. It is also found that the intraday/interday variations at mm-submm wavelengths are consistent with the evolutionary behavior of a standard synchrotron source and for the intraday/interday variations at centimeter wavelengths opacity effects can play a significant role, which is consistent with the interpretation suggested previously by Qian et al. Thus the apparent high brightness temperatures may probably be explained in terms of Doppler boosting effects due to bulk relativistic motion of the source. We will argue a scenario to simulate the correlations between the radio and optical variations on intraday timescales observed in BLO 0716+714 in terms of a relativistic shock propagating through a jet with a dual structure.
Correlated radio-optical variations on intraday timescales have been observed (e.g. in BLO 0716+714) and such radio intraday variability is suggested to have an intrinsic origin. Recently, multi-wavelength observations, simultaneous at radio, mm-submm, optical and hard X-rays, of 0716+714, show that during a period of intraday/interday variations at radio and mm wavelengths, the apparent brightness temperature of the source exceeded the Compton-limit (-10^12 K) by 2-4 orders of magnitude, but no Compton catastrophe (or no high luminosity of inverse-Compton radiation) was detected. It is also found that the intraday/interday variations at mm-submm wavelengths are consistent with the evolutionary behavior of a standard synchrotron source and for the intraday/interday variations at centimeter wavelengths opacity effects can play a significant role, which is consistent with the interpretation suggested previously by Qian et al. Thus the apparent high brightness temperatures may probably be explained in terms of Doppler boosting effects due to bulk relativistic motion of the source. We will argue a scenario to simulate the correlations between the radio and optical variations on intraday timescales observed in BLO 0716+714 in terms of a relativistic shock propagating through a jet with a dual structure.