摘要
针对核动力设备的复杂性和特殊性,提出了基于人工免疫系统的核动力设备故障诊断方法,给出了运用反面选择算法进行建模和克隆变异进化算法进行进一步故障识别的原则。将在旋转机械上采集到的某种信号进行特征提取,并将其作为信号的特征向量输入到建立好的AIS模型。仿真结果表明,此模型能较好地对各种故障类型进行识别。
As the nuclear equipment is complicate and special, this paper put forward a novel fault diagnosis method for nuclear equipment based on artificial immune system and the principle to model with negative-selection algorithm and further identify the fault with clone-variation algorithm. Features are extracted with the signal that was sampled in a rotary, machinery, then the result is input to the AIS model. Simulation result shows that the model can identify each fault type successfully.
出处
《核动力工程》
EI
CAS
CSCD
北大核心
2008年第2期124-128,共5页
Nuclear Power Engineering
基金
"十一五"国防基础科研项目(B0120060585)
关键词
故障诊断
人工免疫系统
反面选择
核动力设备
Fault Diagnosis, Artificial Immune System, Negative-selection, Nuclear equipment