期刊文献+

基于MODIS数据和模糊ARTMAP的冬小麦遥感识别方法 被引量:12

Winter wheat identification based on MODIS data and Fuzzy-ARTMAP
下载PDF
导出
摘要 针对国家级农情遥感监测与信息服务系统对农作物遥感识别的需求,利用Terra/MODIS数据相对于NOAA/AVHRR数据具有的高光谱和中等空间分辨率的优势,以中国华北地区冬小麦识别为例,采用多时相和波谱分析方法,选取合适波段,构造特征植被指数,建立模糊ARTMAP影像分类模型进行大尺度农作物识别,实现农作物遥感自动识别。用Landsat TM进行局部抽样验证,结果精度可达到85.9%。研究表明,仅利用MODIS自身光谱信息,即可实现作物遥感全覆盖自动识别,并可达到较高精度,与传统方法认为冬小麦遥感识别的最佳时间为处于返青期的3月份相比,在时间上可提前约一个季度,因此可以确实地为农业决策部门提供信息服务。 Terra/MODIS has spectral and spatial resolution advantage over NOAA/AVHRR. A method of automatical crop identification on large-scale was set up applying spectral analysis, selecting appropriate bands and using time series characteristics with overall remote sensing images. In the paper, winter wheat identification in North China was taken as an example. First, according to winter wheat phonological stage, the best time phase of identification is at the sowing stage and tillering stage. Second, according to the spectral and biological characteristics of the crop, the spectral reflectances of MODIS were analyzed. One of them, red, blue, NIR and ESWIR bands were selected as working bands for winter wheat identification. And land surface water index(LSWI), which is defined by NIR and ESWIR, enhanced vegetation index(EVI),which is defined by Red, NIR and Blue bands, and EVI21, which is defined by the difference EVI of the two time phase images were used as characteristic parameters to improve the precision. Finally, fuzzy-ARTMAP algorithm was used for winter wheat identification. To verify the result, one Landsat TM was used to verify its precision. The result shows that the precision reaches 85.9%. This shows that it can obviously improve accuracy of crop identification with spectral analysis and times series, and especially the identification time can be advanced for more than three months compared with traditional method, which thinks the best identification time of winter wheat is in March. So it can provide a better operating method for agricultural condition monitoring with remote sensing and information service system at national-level.
出处 《农业工程学报》 EI CAS CSCD 北大核心 2008年第3期173-178,共6页 Transactions of the Chinese Society of Agricultural Engineering
基金 国家863计划资助项目(2003AA131020) 上海高校选拔培养优秀青年教师科研专项基金(RE629) 《地理学与城市环境》重点学科(J50402) 上海师范大学理科科研项目(DKL728)
关键词 冬小麦 模糊ARTMAP 遥感识别 Terra/MODIS winter wheat fuzzy-ARTMAP identification with remote sensing Terra / MODIS
  • 相关文献

参考文献14

  • 1杨邦杰,裴志远,周清波,刘海启.我国农情遥感监测关键技术研究进展[J].农业工程学报,2002,18(3):191-194. 被引量:89
  • 2Wessels K J, DeFries R S, Dempewolf F, et al. Mapping regional cover with MODIS data for biological conversation: Examples from the Greater Yellowstone Ecosystem, USA and Para State, Brazil [J]. Remote Sensing of Environment, 2004, 92:67- 83.
  • 3Zhan X, DeFries S, Townshend J R G, et al. The 250m global land cover change product from the Moderate Resolution Imaging Spectroradiometer of NASA's Earth Observing System.[J]. International Journal of Remote Sensing, 2000, 21(6/7): 1433-1460.
  • 4Muchoney D, Borak J. Application of the MODIS global supervised classification Refel to vegetation and land cover mapping of Central America [J]. International Journal of Remote Sensing, 2000, 21(6/7): 1115-1138.
  • 5Price J C. Compare MODIS and ETM+ data for regional and global land classification [J]. Remote Sensing of Environment, 2003, 86: 491-499.
  • 6林文鹏,王长耀,储德平,牛铮,钱永兰.基于光谱特征分析的主要秋季作物类型提取研究[J].农业工程学报,2006,22(9):128-132. 被引量:51
  • 7Thenkabail P S, Enclona E A, Ashton M S, et al. Hyperion, IKONOS, ALl, and ETM+ sensors in the study of African rainforests [J]. Remote Sensing of Environment, 2004, 90(1): 23-43.
  • 8Thenkabail P S. Inter-sensor relationships between IKONOS and Landsat-7 ETM+ NDVI data in three eco-regions of Africa[J]. International Journal of Remote Sensing, 2004, 25(2): 389-408.
  • 9Gao Bocai. NDWI-A normalized difference water index for remote sensing of vegetation liquid water from space[J]. Remote Sensing Environment, 1996, 58(3): 257-266.
  • 10Xiao Xiangming, Zhang Qingyuan, Saleska S, et al. Satellite-based modeling of gross primary production in a seasonally moist tropical evergreen forest[J]. Remote Sensing of Environment, 2005, 94(1): 105-122.

二级参考文献27

  • 1王长耀,林文鹏.基于MODISEVI的冬小麦产量遥感预测研究[J].农业工程学报,2005,21(10):90-94. 被引量:66
  • 2全国冬小麦遥感综合测产协作组.冬小麦气象卫星遥感综合测产技术体系及方法的研究.冬小麦气象卫星遥感动态监测与估产[M].北京:气象出版社,1993..
  • 3杨邦杰.基于卫星遥感的农情监测系统.科技进步与学科发展[M].北京:中国科学技术出版社,1998.293-295.
  • 4孔九林.中国农作物遥感动态监测与估产总论[M].中国科学技术出版社,1996..
  • 5肖乾广.用NOAA/AVHRR的积分植被指数估算中国粮食总产的研究.遥感在中国[M].北京:测绘出版社,.120-126.
  • 6Wessels K J,DeFries R S,Dempewolf F,et al.Mapping regional cover with MODIS data for biological conversation:Examples from the Greater Yellowstone Ecosystem,USA and Para State,Brazil[J].Remote Sensing of Environment,2004,92:67-83.
  • 7Zhan X,DeFries R S,Townshend J R,et al.The 250m global land cover change product from the Moderate Resolution Imaging Spectroradiometer of NASA's Earth Observing System[J].INT J Remote Sensing,2000,21:1433-1460.
  • 8Muchoney D,Borak J,et al.Application of the MODIS global supervised classification Refel to vegetation and land cover mapping of Central America[J].INT J Remote Sensing,2000,21:1115-1138.
  • 9John C,Price.Compare MODIS and ETM + data for regional and global land classification[J].Remote Sensing of Environment,2003,86:491-499.
  • 10Wim J D,Alfredo R.Huete,et al.MODIS vegetation index compositiong approach:A prototype with AVHRR data[J].Remote Sens.Environ.,1999,69:264-280.

共引文献197

同被引文献218

引证文献12

二级引证文献187

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部