期刊文献+

粒子群算法优化RBF-SVM沙尘暴预报模型参数 被引量:12

Parameters Optimization of RBF-SVM Sand-Dust Storm Forecasting Model Based on PSO
下载PDF
导出
摘要 为提高沙尘暴的预报准确率,针对目前已出现的RBF-SVM沙尘暴预报模型中的参数优化进行研究.利用基本粒子群优化算法(SPSO算法)中粒子速度及其位置与RBF-SVM模型中参数对相对应,对沙尘暴进行预报,为解决SPSO算法易陷入局部解的缺陷,提出了惯性权值自适应调节的改进粒子群算法(WPSO算法),并对沙尘暴RBF-SVM模型参数进行了优化.仿真结果表明,无论是SPSO算法,还是WPSO算法,在优化RBF-SVM沙尘暴预报模型参数方面都表现出了良好的性能,分别比已有的SVM方法的预报准确率提高了22.3%和45.3%. To improve the accuracy of sand-dust storm forecasting, an RBF-SVM method with automatic parameter selection was presented in this paper.The proposed method used the simple particle swarm optimization ( SPSO ) algorithm to get the optimal parameter, in which the velocity and position of each particle correspond a group of RBF- SVM parameters.However, since the PSO tends to get into local optimal solutions, a weight particle swarm optimization ( WPSO ) algorithm was proposed, in which the weights changed dynamically with a liner rule, to optimize the parameters of RBF-SVM.The simulation results show that both PSO-RBF-SVM and WPSO-RBF-SVM can get high recognition accuracy and efficiency.And the accuracy ratios of two kinds of sand-dust storm forecasting are improved by 22.3% and 45.3% compared with the previous SVM, respectively.
出处 《天津大学学报》 EI CAS CSCD 北大核心 2008年第4期413-418,共6页 Journal of Tianjin University(Science and Technology)
关键词 支持向量机 参数优化 粒子群优化 沙尘暴预报 support vector machine parameters optimization particle swarm optimization sand-dust storm forecasting
  • 相关文献

参考文献14

二级参考文献39

  • 1许建华,张学工,李衍达.支持向量机的新发展[J].控制与决策,2004,19(5):481-484. 被引量:132
  • 2董春曦,饶鲜,杨绍全,徐松涛.支持向量机参数选择方法研究[J].系统工程与电子技术,2004,26(8):1117-1120. 被引量:65
  • 3王汉芝,刘振全,王萍.模糊权的神经网在沙尘暴预报中的应用[J].天津科技大学学报,2005,20(2):64-67. 被引量:3
  • 4Vapnik Vladimir N. The Nature of Statistical Learning Theory [M]. Springer-Verlag, New York, Inc, 2000.
  • 5Burges J C. A Tutorial on Support Vector Machines for Pattern Recognition[M]. Kluwer Academic Publishers, Boston, 1999.
  • 6Joachime T. Estimating the Generalization Performance of a SVM Efficiently[M]. Informatik LSV Ⅲ, University Dortmund, 2001.
  • 7董春曦 饶鲜 杨绍全.支持向量机推广能力估计方法综述[A].第一届全国人工智能基础学术会议,2002..
  • 8Lunts A, Brailovskiy V. Evaluation of Attributes Obtained in Statistical Decision Rules[J]. Enginering Cybernetics, 1967,3:98-109.
  • 9Murphy P M, Aha Irvine D W. CA: University of California,Department of Information and Computer Science [ EB/OL ].http://www. ics. uci. edu/~ mlearn/MLRepository. html, 1994.
  • 10V Vapnik.The Nature of Statistical Learning Theory[M].New York: Springer Verlag, 1995.

共引文献331

同被引文献127

引证文献12

二级引证文献123

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部