摘要
为提高沙尘暴的预报准确率,针对目前已出现的RBF-SVM沙尘暴预报模型中的参数优化进行研究.利用基本粒子群优化算法(SPSO算法)中粒子速度及其位置与RBF-SVM模型中参数对相对应,对沙尘暴进行预报,为解决SPSO算法易陷入局部解的缺陷,提出了惯性权值自适应调节的改进粒子群算法(WPSO算法),并对沙尘暴RBF-SVM模型参数进行了优化.仿真结果表明,无论是SPSO算法,还是WPSO算法,在优化RBF-SVM沙尘暴预报模型参数方面都表现出了良好的性能,分别比已有的SVM方法的预报准确率提高了22.3%和45.3%.
To improve the accuracy of sand-dust storm forecasting, an RBF-SVM method with automatic parameter selection was presented in this paper.The proposed method used the simple particle swarm optimization ( SPSO ) algorithm to get the optimal parameter, in which the velocity and position of each particle correspond a group of RBF- SVM parameters.However, since the PSO tends to get into local optimal solutions, a weight particle swarm optimization ( WPSO ) algorithm was proposed, in which the weights changed dynamically with a liner rule, to optimize the parameters of RBF-SVM.The simulation results show that both PSO-RBF-SVM and WPSO-RBF-SVM can get high recognition accuracy and efficiency.And the accuracy ratios of two kinds of sand-dust storm forecasting are improved by 22.3% and 45.3% compared with the previous SVM, respectively.
出处
《天津大学学报》
EI
CAS
CSCD
北大核心
2008年第4期413-418,共6页
Journal of Tianjin University(Science and Technology)
关键词
支持向量机
参数优化
粒子群优化
沙尘暴预报
support vector machine
parameters optimization
particle swarm optimization
sand-dust storm forecasting