期刊文献+

一类带有脉冲接种的类年龄结构SEIR流行病模型

A Kind of SEIR Epidemic Model with Impulsive Vaccinationand Class Age-Structure
下载PDF
导出
摘要 建立了一类新的带有脉冲接种的类年龄结构SEIR流行病模型,并考虑其具有非线性传染率.该模型既含有常微分方程,又含有偏微分方程.证明了当传染病再生数小于1时,无病周期解是全局吸引的. In this paper, we establish a kind of new class age-structure SEIR epidemic model with impulsive vaccination and nonlinear infectivity, which contains ODEs and PDEs at the same time. We demonstrate that the disease-free periodic solution is a global attraction if the reproductive number of infective is less than one.
作者 薛颖 熊佐亮
机构地区 南昌大学数学系
出处 《江西师范大学学报(自然科学版)》 CAS 北大核心 2008年第1期10-14,共5页 Journal of Jiangxi Normal University(Natural Science Edition)
基金 江西省自然科学基金资助项目(0611084)
关键词 脉冲接种 类年龄结构 流行病模型 全局吸引 impulsive vaccination class age-structure epidemic model global attraction
  • 相关文献

参考文献10

  • 1Christopher M Kribs-Zaleta, Maia Martcheva. Vaccination strategies and backward bifurcation in an age-since-infection structured model [J]. Math Biosci, 2002,177:317-332.
  • 2徐文雄,张仲华.年龄结构SIR流行病传播数学模型渐近分析[J].西安交通大学学报,2003,37(10):1086-1089. 被引量:30
  • 3Mimmo Iannelli,Maia Martcheva, Li Xuezhi. Strain replacement in an epidemic model with super-infection and perfect vaccination[ J]. Math Biosci, 2005, 195:23-46.
  • 4Feng Z, IanneUiM , M ilner F A. A two-strain tuberculosis model with age of infect ion [J]. SIAM Appl Math, 2002,62(5) : 1 634- 1 656.
  • 5Martcheva M , Thieme H R. Progression age enhanced backward bifurcation in an epidemic model with suoer-infection[ J] .J Math Biol, 2003, 46: 385-424.
  • 6Weeb G. Theory of nonlinear age-dependent population dynamics [ M ]. New York:Marcel Dekker, 1985.
  • 7Iannelli M. Mathematical theory of age-structured population dynamics, Applied Mathematics Monographs 7, comitato nazionale per le scienze matematiche, Consiglio Nazionale deUe Ricerche (C. N. R. )[M] .P isa:Giardini Edition E Stampatori,1994.
  • 8周知恩,周义仓.传染病动力学的数学建模与研究[M].北京:科学出版社,2004.
  • 9Lakshmikantham V, Bainov D D, Simeonov P S. Theory of impulsive differential equations[ M ]. Singapore: World Scientific, Singapore, 1989.
  • 10Bainov D D , Simeonov P S. Impulsive differential equations: periodic solutions and applications[ M] .New York: Wiley, 1993.

二级参考文献7

  • 1陈兰荪.数学生态学模型与研究方法[M].北京:科学出版社,1998..
  • 2Thieme H R, Castillo-Chavez C. How may infection age-dependent infectivity affect the dynamics of HIV/AIDS? [J]. Siam J Appl Math, 1993, 53(5): 1 447-1 479.
  • 3Feng Z, Iannelli M, Milner F A. A two-strain tuberculosis model with age of infection [J]. Siam J Appl Math, 2002,62(5):1 634-1 656.
  • 4Castillo-Chavez C, Feng Zhilan.Global stability of an age structure model for TB and its applications to optional vaccination strategies [J]. Mathematical Biosciences, 1998, 151(2):135-154.
  • 5Xiao Yanni, Chen Lansun, Bosch F V D. Dynamical behavior for a stage-structured SIR infectious disease model [J]. Nonlinear Analysis: Real World Applications, 2002, 3(2):175-190.
  • 6Song Baojun, Castillo-Chavez C, Aparicio J P. Tuberculosis models with fast and slow dynamics: the role of close and casual contacts [J]. Mathematical Biosciences, 2002, 180(1/2): 187-205.
  • 7陈兰荪.数学生态学模型与研究方法[M].北京:科学出版社,1998..

共引文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部