期刊文献+

用DHR型k-ε紊流模型对锥形渐扩管内紊流的数值仿真——壁面函数·BFC法之时间步长、加速系数和数值方法的影响

Numerical Simulation for Turbulence in a Conical Diffuser by DHR k-ε Turbulence Model:Effects of Time Step,Relaxation Coefficient and of Wall Function·BFC Method Numerical Method
下载PDF
导出
摘要 用DHR型k-ε紊流模型及其壁面函数·BFC(边界拟合曲线坐标变换)法,对总扩散角为80、扩散度为4的锥形渐扩管内充分发展的不可压粘性紊流场进行了数值仿真.所研究紊流的入口雷诺数为1.16×105和2.93×105.在不同的时间步长、加速系数和数值方法等计算条件下进行了数值仿真.分别给出了时均流速和紊流动能分布的计算结果,并分别将其与实验结果进行比较和分析,得知不同计算条件对计算结果的影响程度,计算结果与实验结果较好符合. Fully developed incompressible turbulent flow in a conical diffuser having a total divergence of 8° and an area ratio of 4 has been simulated by DHR k -ε turbulence model and its Wall Function · BFC (Boundary Fit Coordinates)approach. The research has been done for entry Reynolds numbers of 1.16 ×10^5 and 2.93 × 10^5 . The calculated results of the distribution of the mean flow velocity and turbulence energy have been given under the different calculated conditions, such as time step, relaxation coefficient and numerical methods. They were analysed and compared with the experimental results respectively, we got the effects of calculated results under the different calculated conditions, The caculated results agree well with the experimental results.
出处 《湘潭大学自然科学学报》 CAS CSCD 北大核心 2008年第1期14-18,共5页 Natural Science Journal of Xiangtan University
基金 国家自然科学基金项目(59375211)资助
关键词 DHR型k—ε紊流模型 壁面函数·BFC法 锥形渐扩管 数值仿真 时间步长 加速系数 数值方法 DHR k -ε turbulence model wall function · BFC method conical diffuser numerical simulation time step relaxation coefficient numerical methods
  • 相关文献

参考文献6

  • 1LANDER B E, SPALDING D B. The numerical computation of turbulent flows[M]. New York: Northholland Publishing Company,1974.
  • 2HE Yongsen, LIU Shaoying. Numerical prediction of turbulent flow in a conical diffuser using-ε model for near-wall and low renumber[C]//The 4th Asian International Conference on Fluid Machinery. Suzou, 1993.
  • 3THOMPSON J F, THAMES F C, MASTIN C W. Automatic numerical generation of bodyfitted curvilinear coordinate system for fields containing any number of arbitrary two-dimensional bodies [J]. J Comp Phys, 1974,15:299.
  • 4孙勇,何永森.锥形渐扩管内紊流数值预测诊断系统的研究——网格数和差分方法的影响[J].湘潭大学自然科学学报,2005,27(1):47-50. 被引量:5
  • 5OKWUOBI P A C, AZAD R S. turbulence in a conical diffuser with fully developed flow at entry[J]. J Fluid Meeh, 1973, 57 (3): 603.
  • 6SINGH D,AZAD R S. Turbulent kinetic energy balance in a conical diffuser[R]. Department of Mechanical Engineering University of Manitoba Winniipeg. Manitoba, R3T, 2N2 , 1989.

二级参考文献5

  • 1Lander B E,Spalding D B.The Numerical Computation of Turbulent Flows[A].Compu Methods in Appland Eng[C].New York:Northholland Publishing Company,1974:269.
  • 2Thompson J F,Thames F C,Mastin C W.Automatic numerical generation of bodyfitted curvilinear coordinate system for fields containing any number of arbitrary two-dimensional bodies[J].J Comp Phys,1974:15:299.
  • 3Laufer J.The Structure of Turbulence in Fully Developed Pipe Flow NACA Rep[R].1174.Washington:U S Government Printing Office,1955:6.
  • 4Okwuobi P A C,Azad R S.Turbulence in a Conical Diffuser with Fully Developed Flow at Entry[J].J Fluid Mech,1973:57(3):603.
  • 5Singh D,Azad R S.Turbulent Kinetic Energy Balance in a Conical Diffuser[J].Proc of Turbulence ,1981,21:30-34.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部