期刊文献+

基于小波图像压缩技术的算法研究 被引量:3

Algorithm Research on Image Compression Technologies with Wavelet Transform
下载PDF
导出
摘要 小波变换通过多分辨分析过程将一幅图像分解成近似和细节部分,细节对应的是小尺度的瞬间,在本尺度内很稳定。因此将细节存储起来,对近似部分在下一个尺度上进行分解,重复该过程即可。近似与细节在正交镜像滤波器算法中分别对应于高通和低通滤波器,这种变换通过尺度去掉相关性,在图像压缩中被证明是有效的。由于小波变换后高频部分小波系数的绝对值较小,而低频部分小波系数的绝对值较大,这样,在图像编码处理中,可以对高频部分大多数系数分配较小的比特以达到压缩的目的。 With the process of muhiresolution analysis, wavelet transform seperates an image into approximate and detail parts. The detail part corresponds with the small scaling transience which is stable in the small scale, and then wavelet transform analyzes the approximate part in the next scale. In the algorithm of quadrature mirror filters, the approximat part corresponds with high - pass filter and the other part corresponds with low - pass filter. This transform subtracts correlation through scale and it is efficient in image compression. After wavelet transform, the absolute value of wavelet coefficients in the part of high frequency is less, and that in the part of low frequency is more. In that case, the image can be compressed with less bits for in the most coefficients in the part of high frequency.
出处 《中山大学学报(自然科学版)》 CAS CSCD 北大核心 2008年第2期42-45,共4页 Acta Scientiarum Naturalium Universitatis Sunyatseni
基金 国家自然科学基金资助项目(10171109) 佛山科学技术学院专项基金资助项目
关键词 小波变换 图像压缩 高频系数 低频系数 wavelet transform Image compression coefficient of high frequency coefficient of low frequency
  • 相关文献

参考文献10

  • 1CAI T, BROWN L. Wavelet shrinkage for nonequispaced samples[ J]. Annals of Statistics, 2005, 26(5) : 1783 - 1799.
  • 2MALLAT S. Multifrequency channel decomposition of im- ages and wavelet models [ J ]. IEEE Trans ASSP, 1998,37 (12) :2091 -2110.
  • 3MALLAT S, ZHONG S. Characterization of signals from multiscale edges [ J ]. IEEE Trans PAMI, 2003,14 ( 7 ) : 710 - 732.
  • 4DONOHO David L,JOHNSTONE I M. Ideal spatial adap- tation via wavelet shrinkage[ J]. Biometric, 1998,81:425-455.
  • 5COHEN A. Biorthogonal wavelets[ M]//C. K. Chui ed. Wavelets: A tutorial in theory and application, Academic Press Ltd. , 1999 : 123 - 152.
  • 6SARDY S. Wavelet shrinkage for unequally spaced data [ J ]. Statistics and Computing, 1999, 9 ( 1 ) : 65 - 75.
  • 7ZHANG Lei, BAO Paul, WU Xiaolin. Hybrid inter- and intra - wavelet scale image restoration [ J ]. Pattern Recognition Letter, 2003,36 ( 8 ) : !737 - 1746.
  • 8COHEN A. Biorthogonal wavelets and dual filter[M]// M. Barland ed. Wavelets in Image Communication. Elsevier, 1994 : 1 - 26.
  • 9DONOHO D L. Denoising by soft -thresholding [ J ]. IEEE Transactions on Information Theory, 1999, 1 (2) : 115 - 122.
  • 10MALLAT S, HWANG W L. Singularity detection and processing with wavelets [ J ]. IEEE Trans IT, 2002,38 (2) :617 -643.

同被引文献22

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部