期刊文献+

Number-Phase Quantization and Deriving Energy-Level Gap of Two LC Circuits with Mutual-Inductance 被引量:1

Number-Phase Quantization and Deriving Energy-Level Gap of Two LC Circuits with Mutual-Inductance
下载PDF
导出
摘要 For two LC circuits with mutual-inductance, we introduce a new quantization scheme in the context of number- phase quantization through the standard Lagrangian formalism. The commutative relation between the charge operator and the magnetic flux operator is derived. Then we use the Heisenberg equation of motion to obtain the current and voltage equation across the inductance and capacity. The results clearly show how the current and voltage in a single LC circuit are affected by the circuit parameters and inductance coupling coettlcient. In addition, adopting invariant eigen-operator method the energy-level gap of the dynamic Hamiltonian which describes two LC circuits with mutual-inductance is obtained. For two LC circuits with mutual-inductance, we introduce a new quantization scheme in the context of number- phase quantization through the standard Lagrangian formalism. The commutative relation between the charge operator and the magnetic flux operator is derived. Then we use the Heisenberg equation of motion to obtain the current and voltage equation across the inductance and capacity. The results clearly show how the current and voltage in a single LC circuit are affected by the circuit parameters and inductance coupling coettlcient. In addition, adopting invariant eigen-operator method the energy-level gap of the dynamic Hamiltonian which describes two LC circuits with mutual-inductance is obtained.
出处 《Chinese Physics Letters》 SCIE CAS CSCD 2008年第4期1205-1208,共4页 中国物理快报(英文版)
基金 Supported by the National Natural Science Foundation of China under Grant 10574060, and the Natural Science Foundation of Shandong Province of China under Grant Y2004A09.
关键词 supernova explosion proto-neutron star shock wave supernova explosion, proto-neutron star, shock wave
  • 相关文献

参考文献21

  • 1Louisell W H 1973 Quantum Statistical Properties of Radiation (New York: Wiley)
  • 2Landauer R 1957 IBM J. Res. Dev. 1 223
  • 3Buot F A 1993 Phys. Rep. 234 73
  • 4Garcia R G 1992 Appl. Phys. Lett. 60 1960
  • 5Xu X L, Li H Q and Wang J S 2007 Chin. Phys. 16 2462
  • 6Wang J S et al 2001 Phys. Lett. A 281 341
  • 7Wang J Set al 2000 Phys. Lett. A 276 155
  • 8Chen B and Li Y Q 1995 Phys. Lett. A 205 121
  • 9Li Y Q and Chen B 1996 Phys. Rev. B 53 4027
  • 10Fan H Y et al 2002 Phys. Lett. A 305 222

同被引文献5

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部