摘要
A novel type of V-shaped (isosceles triangle cross-section) diffuser/nozzle element is proposed for use for valveless micropump. Stationary fluid dynamic behaviour of V-shaped diffuser/nozzle elements in a valveless micropump is investigated by experiment and simulation. Both the results agree well with each other when the Reynolds number is higher than 100 and the pressure loss coefficient ratio of micropump nearly always keeps a constant. For a single V-shaped diffuser, the general trends of variation of pressure loss coefficient with opening angle and Reynolds number are opposite in small and large angles. Compared with conical and flat-wall diffusers, V-shaped diffuser shows the smallest pressure loss when the Reynolds number is 200.
A novel type of V-shaped (isosceles triangle cross-section) diffuser/nozzle element is proposed for use for valveless micropump. Stationary fluid dynamic behaviour of V-shaped diffuser/nozzle elements in a valveless micropump is investigated by experiment and simulation. Both the results agree well with each other when the Reynolds number is higher than 100 and the pressure loss coefficient ratio of micropump nearly always keeps a constant. For a single V-shaped diffuser, the general trends of variation of pressure loss coefficient with opening angle and Reynolds number are opposite in small and large angles. Compared with conical and flat-wall diffusers, V-shaped diffuser shows the smallest pressure loss when the Reynolds number is 200.
基金
Supported by the National High-Tech Research and Programme of China under Grant No 2007AA03Z103, and the National Natural Science Foundation of China under Grant No 50742007.