期刊文献+

单自由度含间隙分段线性系统周期运动的倍化分岔 被引量:3

Period-Doubling Bifurcation of Single-Degree-of-Freedom Piecewise-Linearity System with Clearance
下载PDF
导出
摘要 研究单自由度含间隙分段线性系统周期运动的倍化分岔现象和混沌行为.求出系统的切换矩阵后,应用Floquet理论分析该系统周期运动发生倍化分岔的条件.通过建立Poincaré映射,用数值方法揭示系统周期运动经倍化分岔通向混沌的现象.结果表明,当激振频率接近临界分岔点时,系统有1个Floquet特征乘子接近-1,系统发生倍周期分岔. The period-doubling bifurcation and chaos of periodic motions of a single-degree-of-freedom piecewise linear system with clearance was studied. The switching matrix for the system was obtained, and the period-doubling bifurcation of periodic motions was analyzed by the Floquet theory. The poincare map was established, and the period-doubling bifurcations and chaotic behaviors in the nonsmooth system were further investigated by means of numerical simulation. The results show that there is a Floquet multiplier close to - 1 for the system, and period-doubling bifurcations occur when the excitation frequency approaches a critical bifurcation point.
出处 《西南交通大学学报》 EI CSCD 北大核心 2008年第2期227-231,共5页 Journal of Southwest Jiaotong University
基金 国家自然科学基金资助项目(10772151 10472096)
关键词 分段线性 FLOQUET理论 周期运动 倍化分岔 混沌 piecewise-linearity Floquet theory periodic motion period-doubling bifurcation chaos
  • 相关文献

参考文献10

  • 1GUCKENHEIMER J, HOLMESP. Nonlinear oscillations, dynamical systems, and bifurcations of vector fields [ M ]. New York: Springer-Verlag, 1983: 117-287.
  • 2HAGEDORN P. Non-linear oscillations [ M ]. Oxford : Clarendon Press, 1981 : 117-154.
  • 3KUZNETSOV Y A. Elements of applied bifurcation theory[ M]. New York: Springer-Verlag, 2004: 117-155.
  • 4SEYDEL R. Practical bifurcation and stability analysis[ M ]. New York: Springcr-Vcrlag, 1994: 249-297.
  • 5LUO A C J, CHEN L. Periodic motions and gazing in a harmonically forced, piecewise, linear oscillator with impacts[J]. Chaos, Solitons and Fractals, 2005; 24(2) : 567-578.
  • 6LI Y, FENG Z C. Bifurcation and chaos in frlction-induced vibration [ J ]. Communications in Nonlinear Science and Numerical Simulation, 2004, 9 (6) : 633-647.
  • 7XIE J H, DING W C. Hopf-Hopf bifurcation and invariant torus T^2 of a vibro-impact system [J]. International Journal of Non-Linear Mechanics, 2005 ; 40 (4) : 531-543.
  • 8YOSHITAKE Y, SUEOKA A, SHOJI N, et al. Vibrations of nonlinear systems with discontinuities : the case of the preloaded compliance system[J]. JSME Series. 1998, 41 (4) : 710-717.
  • 9安德罗诺夫AA,维特AA,哈依金C Э.振动理论(下册)[M].高为炳,杨汝藏译.北京:科学出版社,1974:102.
  • 10LEINE R I, NIJMEIJER H. Dynamics and bifurcation of non-smooth mechanical systems [ M ]. Berlin : Springer, 2004 :101-118.

同被引文献17

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部