期刊文献+

二维目标下分布性与收敛性结合的种群维护策略 被引量:2

Population maintenance strategy combining diversity with convergence for 2-objective problem
下载PDF
导出
摘要 种群维护是多目标进化算法的重要组成部分。针对传统方法在维护过程中只考虑分布性的情况,提出一种分布性与收敛性结合的种群维护策略,该方法用一种邻近个体间的相对趋近关系来表示其适应值,弥补了单纯Pareto支配关系的"粗糙性",并用一种可调邻域的方法对种群的密集程度进行控制。将其与NSGA-II和SPEA2进行对比,实验结果表明该算法在有效保持种群分布性的同时,拥有良好的收敛性和速度。 Population maintenance is an important issue in multi-objective evolutionary algorithms.For the traditional methods only concentrate on the distribution of solutions,a population maintenance strategy with both diversity and convergence considered is proposed.This measure assigns fitness with relative convergent relationship during neighboring individuals,which compensated the "coarseness" of the simple Pareto dominance relation effectively,and controlled crowding degree with an adjustable neighborhood method.Comparing with NSGA-Ⅱ and SPEA2,this algorithm can maintain diversity of the population effectively,and have a good convergence and running time.
出处 《计算机工程与应用》 CSCD 北大核心 2008年第11期75-79,共5页 Computer Engineering and Applications
基金 国家自然科学基金(the National Natural Science Foundation of China under Grant No.60773047) 国家高技术研究发展计划(863)(theNational High- Tech Research and Development Plan of China under Grant No.2001AA114060) 湖南省自然科学基金(the NaturalScience Foundation of Hunan Province of China under Grant No.05JJ30125) 教育部留学回国人员科研启动基金(The Project-sponsored bySRF for ROCS SEM教外司留[2005]546号) 湖南省教育厅重点科研项目(No.06A074)
关键词 多目标进化算法 多目标优化问题 种群维护 收敛性 分布性 multi-objective evolutionary algorithm multi-objective optimal problem population maintenance convergence diversity
  • 相关文献

参考文献20

  • 1Deb K.Multi-objective optimization using evolutionary algorithms[M]. Chichester,UK:John Wiley & Sons,2001.
  • 2Fonseca C M,Fleming P J.Genetic algorithm for multiobjective optimization : formulation, discussion and generalization[C]//Forrest S. Proceedings of the Fifth lntenlational Conference on Genetic Algorithms.San Mateo: Morgan Kauffman Publishers, 1993:416-423.
  • 3Horn J,Nafpliotis N,Goldberg D E.A niched pareto genetic algo rithm for multiobjective optimization[C]//Proceedings of the First IEEE Conference on Evolutionary Computation, IEEE World Congress on Computational Intelligence,Piscataway,New Jersey, 1994.IEEE Service Center, 1994,1:82-87.
  • 4Erickson M,Mayer A,Horn J.The niched pareto genetic algorithm 2 applied to the design of groundwater remediation systems[C]//EMO, 2001 : 681-695.
  • 5Srinivas N,Deb K.Multi-objective optimization using non-dominated sorting in genetic algorithms[J].Evolutionary Computation,1994, 2(3 ) : 221-248.
  • 6Deb K,Agrawal S,Pratab A,et al.A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization:NSGA-Ⅱ,KanGAL report 200001[R].Indian Institute of Technology, Kanpur, India.
  • 7Zitzler E,Thiele L.Multi-objective evolutionary algorithms:a comparative case study and the strength pareto approach [J].IEEE Transactions on Evolutionary Computation, 1999,3 ( 4 ) : 257-271.
  • 8Zitzler E,Laumanns M,Thiele LSPEA2:improving the strength Pareto evolutionary algorithm,TIK-Report 103[R].2001.
  • 9Kim M,Hiroyasu T,Miki M,et al.SPEA2+:improving the performance of the strength pareto evolutionary algorithm 2[C]//Lecture Notes in Computer Science 3242:Parallel Problem Solving from Nature PPSN VIII,Birmingham,UK,September 2004.Springer-Verlag, 2004: 742-751.
  • 10Come D W,Knowles J D,Oates M J.The Pareto envelope-based selection algorithm for multiobjective optimization[C]//Schoenauer M,Deb K,Rudolph G,et al.Proceedings of the Parallel Problem Solving from Nature VI Conference.New York : Springer, 2000 : 839-848.

同被引文献19

  • 1张振理,王英勋.基于CHC算法的无人机航迹规划方法[J].北京航空航天大学学报,2007,33(6):690-693. 被引量:3
  • 2Pritchard David E. Dynamic route re-planning and re-tasking of unmanned aerial reconnaissance vehicles [ D ]. America: Air Force Institute of Technology,2000.
  • 3Stuart D M. Sensor design for unmanned aerial vehicles [ J]. IEEE Aerospace Conference, 1997,3:285 - 295.
  • 4Zhang Yani, Gao Jinyuan. In-flight route re-planning for endurance reconnaissance UAVs [ C]//2th International Symposium on Systems and Control in Aeronautics and Astronautics. 2008 : 73 -78.
  • 5Leachtenauer Jon C. Surveillance and reconnaissance imaging systems : modeling and performance prediction [ M ]. Boston : Artech House ,2001.
  • 6Zitzler Eckart. Evolutionary algorithms for multiobjective optimization:methods and applications [ D ]. Swiss : Computer Engineering and Networks Laboratory, Swiss Federal Institute of Technology Zurich, 1999.
  • 7Giarratano J, Riley G. Expert systems principles and programming [ M ]. Third Edition. Boston : PWS Publishing Company, 1998.
  • 8Gregorio T P,Coello C A C,Luis V S.EMOPSO:a multi-objective particle swarm optimizer with emphasis on efficiency[C]// EMO,LNCS 4403,Springer-Verlag Berlin Heidelberg,2007:272-285.
  • 9Baumgartner U,Magele C H,Renhart W.Pareto optimality and particle swarm optimization[J].IEEE Trans.on Magnetics,2004,40(2):1172-1175.
  • 10Pratab A,Deb K.A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization:NSGA-2.Kan-GAL report 200001[R].Indian Institute of Technology,Kanpur,India,2000.

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部