期刊文献+

Heisenberg群上p-次Laplace算子的Dirichlet特征值估计

Dirichlet eigenvalue estimates for p-sub-Laplacian in the Heisenberg group
下载PDF
导出
摘要 我们研究了Heisenberg群Hn中具有光滑边界的域上p-次Laplace算子的Dirichlet特征值问题.运用Ljusternik-Schnirelman原理,我们给出了特征值序列的存在性,然后利用有界域上的Hardy型不等式,给出了基本特征值率的估计. We study the Dirichlet eigenvalue problem for the p-Laplace operator on a bounded domain in the Heisenberg group H^n. Using the Ljusternik-Schnireman principle, we show the existence of a sequence of eigenvalues. Then we give the estimate of the fundamental eigenvalue ratio, using the Hardy-type inequality on the bounded do-main.
作者 魏江勇 魏娜
出处 《商丘师范学院学报》 CAS 2008年第3期23-26,30,共5页 Journal of Shangqiu Normal University
基金 2007年西北工业大学本科毕业设计(论文)重点扶持项目 陕西省自然科学基础研究计划资助项目(批准号:2006A09)
关键词 HEISENBERG群 p-次Laplace算子 特征值估计 HARDY型不等式 Heisenberg group p - sub - Laplacian eigenvalue estimeate Hardy - type inequality
  • 相关文献

参考文献9

  • 1Arcozze N, Frerari F, Metric normal and distance function in the Heisenberg group [ J/OL]. http ://www. Dmuniboit/Ferrari/papers/AFfinalepdf. 2005.
  • 2Browder E, Rossi J D. Existence theorems for nonlinear partial differential equations [ M ]. in:Global Analysis ,proceediongs of the Symposium pure Mathematics, vol. XVI, Berkeley, California, 1968, American Mathematics Society providence, RI, 1970.1 - 66.
  • 3Bonder J F, Rossi J D. A nonlinear eigenvalue problem with indefinite weights related to the Sobolev trace embedding[ J ]. pulb. Mat. ,2002,46:221 - 235.
  • 4Fleckinger J, Evans M. Harrell Ⅱ , Francois de Thelin, On the fundamental eigenvalue ratio of the p - Laplacian [ J ]. Bull. Sci. Math. ,2007,131 (7) :613 -619.
  • 5Le A . Eigenvalue problems for the p -Laplacian [ J ]. Nonlinear. Anal ,2006.64:1057 - 1099.
  • 6罗学波,钮鹏程.向量场平方和算子的特征值问题[J].应用数学,1997,10(4):101-104. 被引量:8
  • 7Monti R. Some properties of Carnot -Caratheodory balls in the Heisenberg group [ J ]. Mat Appl. ,2001,11 (3) :155 - 156.
  • 8Niu P,Zhang H. Payne -Polya -Weinberger Type Inequalities for Eigenvaluses of Nondlliptic Operators [ J ]. pacific Journal of Matematics ,2003,208 (2) : 325 - 345.
  • 9Zeidler E. Nonlinear functional analysis and its applications [ M ]. 3, Variational Methods and Optimization, Springer, Berlin, 1985.

二级参考文献1

  • 1Linda Preiss Rothschild,E. M. Stein. Hypoelliptic differential operators and nilpotent groups[J] 1976,Acta Mathematica(1):247~320

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部