期刊文献+

Dynamical behavior of a delay virus dynamics model with CTL immune response

Dynamical behavior of a delay virus dynamics model with CTL immune response
下载PDF
导出
摘要 In this paper,we study the stability of the equilibria of a delay virus dynamics model with CTL immune response by Hurwitz Criterion.And the discrete delay of the model describes the time between initial infection of a cell by HIV and the release of new virions.We study the effect of the time delay on the stability of infected steady state,conditions are given to ensure that the infected steady state is locally asymptotically stable for all delay. Numerical simulations are presented to ill ustrate the results. In this paper, we study the stability of immune response by Hurwitz Criterion. And the the equilibria of a delay virus dynamics model with CTL discrete delay of the model describes the time between initial infection of a cell by HIV and the release of new virions. We study the effect of the time delay on the stability of infected steady state, conditions are given to ensure that the infected steady state is locally asymptotically stable for all delay. Numerical simulations are presented to ill ustrate the results.
出处 《商丘师范学院学报》 CAS 2008年第3期31-34,共4页 Journal of Shangqiu Normal University
关键词 动力学 动态模型 局部稳定性 免疫响应 艾滋病病毒 免疫细胞 免疫因子 CTL immune response delay virus dynamics local stability
  • 相关文献

参考文献9

  • 1De Boer R J, Perelson A S. Target cell limited and immune control models of HIV infection:A comparison [ J ]. J. Theor. Biol. , 1998,190:201 -214.
  • 2Kepler T B,Perelson A S. Cyclic re -entry of germinal center B cells and the efficiency of affinity maturation[J]. Immunol. Today, 1993,14:412 - 415.
  • 3MeKe ithan, Kinetic T W. proofreading in T - ell receptor signal transduetor[ J ]. Proc. Natl Acad. Sci. USA, 1995,92:5042 - 5046.
  • 4Song X Y, Chang S H. A delay - differential equation model of HIV infecton of CD4 + T - cells[ J ]. J. Koreal Math. Soc. ,2005, 42(5 ) : 1071 - 1086.
  • 5MacDonald N. Time Delays in Biological Models[ M]. Spring- Verlag, Heidelberg, 1978.
  • 6Mittler J E, Sulzer B, Neumann, A U, Perelson A S. Influence of delayed viral pro - duction on viral dynamics in HIV - 1 infected patients[ J]. Math. Biosci. , 1998,152 : 143 - 163.
  • 7庞海燕,王稳地,王开发.考虑CTL免疫反应的病毒动力学模型的全局稳定性分析(英文)[J].西南师范大学学报(自然科学版),2005,30(5):796-799. 被引量:24
  • 8Culshaw R V,Ruan S. A delay - differential equation model of HIV infecton of CD4 + T - cells[ J]. Math. Biosci. ,2000,165 ( 1 ) :27 -39.
  • 9Kuang Y. Delay Differential Equations with Applications in Population Dynamics[ M]. Academic Press,London ,2004.

二级参考文献6

  • 1Tsuyoshi Kajiwara, Toru Sasaki. A Note on the Stability Analysis of Pathogen-Immune Interaction Dynamics [J]. Discrete and Continuous Dynamical Systems-Series B, 2004, 4:615 -622.
  • 2Liu Weimin. Nonliear Oscillations in Models of Immune Responses to Persistent Viruses [J]. Theoretical Population Biology, 1997, 52: 224-230.
  • 3Martin A Nowak, Charles R M Bangham. Population Dynamics of Immune Responses to Persistent Viruses [J], Science, 1996, 272: 74-79.
  • 4陈兰荪.生物数学论[M].北京:科学出版社,1988..
  • 5HofbauerJ SigmundK 陆征一 罗勇 译.进化对策与种群动力学[M].成都:四川科学技术出版社,2002..
  • 6金瑜,张勇,王稳地.一类具有阶段结构的传染病模型[J].西南师范大学学报(自然科学版),2003,28(6):863-868. 被引量:19

共引文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部