摘要
A new method for parameter optimization of pharmacokinetics based on an artificial immune network named PKAIN is proposed. To improve local searching ability of the artificial immune network, a partition-based concurrent simplex mutation is developed. By means of evolution of network cells in the PKAIN artificial immune network, an optimal set of parameters of a given pharmacokinetic model is obtained. The Laplace transform is applied to the pharmacokinetic differential equations of remifentanil and its major metabolite, remifentanil acid. The PKAIN method is used to optimize parameters of the derived compartment models. Experimental results show that the twocompartment model is sufficient for the pharmacokinetic study of remifentanil acid for patients with mild degree of renal impairment.
A new method for parameter optimization of pharmacokinetics based on an artificial immune network named PKAIN is proposed. To improve local searching ability of the artificial immune network, a partition-based concurrent simplex mutation is developed. By means of evolution of network cells in the PKAIN artificial immune network, an optimal set of parameters of a given pharmacokinetic model is obtained. The Laplace transform is applied to the pharmacokinetic differential equations of remifentanil and its major metabolite, remifentanil acid. The PKAIN method is used to optimize parameters of the derived compartment models. Experimental results show that the twocompartment model is sufficient for the pharmacokinetic study of remifentanil acid for patients with mild degree of renal impairment.
基金
Project supported by Health Department of Jiangsu Province(No.P200512)