摘要
本文将音频信号的MFCC参数作为特征向量,并使用前馈型神经网络对语音、音乐、语音+音乐、环境音响、静音5类音频进行分类,取得了平均92%的正确率。
In this paper,MFCC is abstracted as feature vectors of the audio signals,and the Nueron Networks is chosen to classify five audio documents:speech, music, speech+music, background and silence. The experimental results show that Nueron Networks is excellent for classification of audio documents,and the average classification accuracy is up to 92%.
出处
《中国西部科技》
2008年第9期16-17,15,共3页
Science and Technology of West China
关键词
神经网络
音频
分类
Neural Networks
Audio
Categories