期刊文献+

低密度校验码(LDPC码) 被引量:2

Low density parity check codes
下载PDF
导出
摘要 低密度校验码(Low Density Parity Check Codes,LDPCcodes)是当前编码理论领域研究最热的信道编码之一。本文首先对信道编码研究历程作了简单回顾,然后介绍了LDPC码的发展历程并全面介绍了其相关理论。对LDPC码的和积译码算法(Sum-Product Algorithm,SPA)或置信传播算法(Belief Propagation Algorithm,BPA)、基于二分图的随机构造与代数构造、密度进化理论、高斯近似以及EXIT表分析等相关技术理论的发展和原理进行了详尽的阐述。同时本文还给出近年来LDPC码最新研究成果并给出一些开放性的研究课题。 Low Density Parity Check (LDPC) codes is one of the high topics of the channel coding theory and has been paid more and more attention. This paper begins with a brief review of channel coding theories. Then the iterative decoding algorithm of LDPC codes, so-called as Sum-Product algorithm or Belief Propagation algorithm, is represented in detail. And the construction of LDPC codes by means of random bipartite graph and algebraic constructions, and the performance analysis by Density Evolution theory, Gaussian Approximation method and Extrinsic Information Transfer (EXIT) charts etc., are respectively discussed. Finally, the latest study results of LDPC codes are presented and some open questions about LDPC codes are provided.
出处 《电路与系统学报》 CSCD 北大核心 2008年第2期95-103,78,共10页 Journal of Circuits and Systems
基金 国家自然基金项目(60772067)
关键词 LDPC码 置信传播 和积译码 构造 密度进化 高斯近似 EXIT LDPC belief propagation sum-product algorithm density evolution Gaussian Approximation EXIT
  • 相关文献

参考文献58

  • 1C Berrou, A Glavieux. Near optimum error correcting coding and decoding: Turbo-codes [J]. IEEE Trans. Commun., 1996. 44(10): 1261-1271.
  • 2R G Gallager. Low density prity check codes [J]. IRE Trans. Inform.Theory, 1962-01, IT-8: 21-28.
  • 3R G Gallager. Low-Density Parity-Check Codes [D]. Cambridge, MA:M.I.T. Press, 1963.
  • 4G D Forney Jr. Concatenated Codes [D]. Cambridge, MA: MIT Press, 1966.
  • 5V V Zyablov, M S Pinsker. Estimation of error-correction complexity of Gallager low-density codes [J]. Probl. Inform. Transm., 1976, 11: 18-28.
  • 6M R Tanner. A recursive approach to low complexity codes [J]. IEEE Trans. Inform.Theory, 1981, 27: 533-547.
  • 7G A Margulis. Explicit constructions of graphs without short cycles and low-density codes [J]. Combinatoriea, 1982., 2(1): 71-78.
  • 8C E Shannon. A mathematical theory of communication [J]. Bell System Technical Journal, 1948, 27: 379-423.
  • 9L R Bahl, J Cocke, F Jelinek, J Raviv. Optimal decoding of linear codes for minimizing symbol error rate [J]. IEEE Trans. Inform.Theory, 1974, IT-20: 284-287.
  • 10N Wiberg, H A Loeliger, R Kotter. Codes and iterative decoding on general graphs [J]. Euro. Trans. Teleeommun., 1995, (6): 513-525.

二级参考文献8

  • 1Pearl J. Probabilistic Reasoning in Intelligent Systems. 2nd ed.San Francisco,CA: Kaufmann,1988.
  • 2Mceliece R J,Mackay D J C, Cheng J-F. Turbo decoding as an instance of Pearl's "belief propagation" algorithm. IEEE Journal on Selected Area in Communication,1998,16(2):140-152.
  • 3Kschischang F R, Frey B J, Loeliger H-A. Factor graphs and the sum-product algorithm. IEEE Transactions on Information Theory,2001,47(2) : 498- 519.
  • 4Richardson T J,Urbanke R L. The capacity of low-density parity check codes under message-passing decoding. IEEE Transactions on Information Theory,2001,47(2) :599-618.
  • 5Luby M, Mitzenmacher M,Shokrollahi M A,Spielman D A. Improved low-density parity-check codes using irregular graphs and belief propagation. In: Proceedings of 1998 International Symposium On Information Theory ( ISIT), Cambridge, MA, 1998,117.
  • 6Mackay D J C. Good error-correcting codes based on very sparse matrices. IEEE Transactions on Information Theory, 1999,45(2) : 399- 431.
  • 7Chung S-Y, Richardson T J, Urbanke R L. Analysis of sumproduct decoding of low-density parity-check codes using a Gaussian approximation. IEEE Transactions on Information Theory,2001,47(2) :657-670.
  • 8He Yu-Cheng,Sun Shao-Hui, Wang Xin-Mei. Fast decoding of LDPC codes using quantization. Electronics Letters, 2002, 38(4) : 189- 190.

共引文献1

同被引文献19

  • 1KSCHISCHANG F R,FREY B J, LOGILGER H A. Factor graphs and the sum-product algorithm[J]. IEEE Trans Inf Theory,2001,47(2) : 489-519.
  • 2TANNER R M. A recursive approach to low complexity codes [J]. IEEE Trans Inf Theory,1981,27(5) :533-547.
  • 3YANG L L, HANZO L. Differential acquisition of m sequence using recursive soft sequential estimation [ J ]. IEEE Trans on Wireless Communications, 2005, 4( 1 ) :128-136.
  • 4SKLAR B, HARRIS F J. The ABCs of linear block codes [J]. IEEE Signal Processing Magazine, 2004, 21 (4) : 14- 35.
  • 5CHUGG K M, ZHU M R. A new approach to rapid PN code acquisition using iterative message passing techniques [J ]. IEEE Journal on Selected Areas in Communications, 2005,23(5) :884-897.
  • 6KANG B J, KEE I K. A performance comparison of code acquisition techniques in DS-CDMA system [J ]. Wireless Personal Communications,2003,25(2) : 163-176.
  • 7MEER V D, PATHIRANA R L. Performance analysis of a hybrid acquisition system for DS spread spectrum[ C]//Proceedings of IEEE TENCON 2003. New Delhi: Allied Publishers Private Limited, 2003 : 121-125.
  • 8Xin-Yu Shih, Cheng-Zhou Zhan, Cheng-Hung Lin, et al. An 8.29 mm^2 52 mW Multi-Mode LDPC Decoder Design for Mobile WiMAX System in 0.13μm CMOS Process[J]. IEEE Journal of Solid-State Circuits. 2008, 43(3): 672-683.
  • 9Hong Ding, Shuai Yang, Wu Luo, et al. Design and Implementation for High Speed LDPC Decoder with Layered Decoding [A]. CMC'09 WRI International Conference on Communications and Mobile Computing [C]. Yunnan, 2009-01. 156:160.
  • 10IEEE Standard for Local and Metropolitan Area Networks[S]. 2006.

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部