期刊文献+

亚单层铜薄膜生长的动力学蒙特卡罗模拟

Kinetic Monte Carlo Simulation of Submonolayer Copper Film Growth
下载PDF
导出
摘要 建立了亚单层铜薄膜生长的三维模型,用动力学蒙特卡罗方法对亚单层铜薄膜的生长过程进行了模拟,研究了衬底温度和沉积速率对亚单层铜薄膜生长的影响,结果表明,随衬底温度升高和沉积速率降低,岛形状由离散型逐渐转变为紧致型,形成近四方形的岛,岛的平均尺寸急剧增大,岛的数目迅速减少,衬底温度达到一定值之后,岛的数目基本不变. Modeling and simulation of submonolayer growth of copper film were carried out using the kinetic Monte Carlo method. The influence of substrate temperatures and deposition rates on the morphology of copper film was studied. The results show that the morphology of submonolayer copper films changes from dispersod islands to nearsquare compact islands with increasing substrate temperatures and decreasing deposition rates. The average sizes of the islands rise sharply with increasing substrate temperatures and decreasing deposition rates. The number of the islands decreases rapidly with increasing the substrate temperature and decreasing deposition rate. The number of islands doesn' t change when the substrate temperature is more than a certain value.
出处 《佳木斯大学学报(自然科学版)》 CAS 2008年第2期172-174,177,共4页 Journal of Jiamusi University:Natural Science Edition
基金 黑龙江省自然科学基金项目资助(E2006-12)
关键词 亚单层 铜薄膜生长 扩散 动力学蒙特卡罗模拟 copper thin film submonolayer diffusion Kinetic Monte Carlo simulation
  • 相关文献

参考文献8

  • 1Wang L G,Cluncy P.Kinetic Monte Carlo simulation of the growth of polycrystalline Cu films[J].Surface Science,2001,473:25-38.
  • 2王恩哥.薄膜生长中的表面动力学(Ⅰ)[J].物理学进展,2003,23(1):1-61. 被引量:92
  • 3Evans J W, Tniel P A, Bartelt MC.Morphological evolution during epitaxial thin film growth:Formation of 2D islands and 3D mounds[J].Surface Science Reports,2006, 61: 72-73.
  • 4Frank S,Wedler H,Behm R J.Evans,Approeching the low-temperature limit in nucleation and two-dimensional growth of fcc(100):metal films Ag/Ag(100)[J].Phys.Rev.B,2002,66:155-435.
  • 5Adams B J.Modeling Cu thin film growth[J].Thin Solid Films,2000,365:201-210.
  • 6Zhang P F,Zheng X P,He D Y.Kinetic Monte Carlo simulation of thin film growth[J].Science in China(Series G).2003,46:6.
  • 7Voter A F.Introduction to the kinetic Monte Carlo method[J].In:Sickafus K E,Kotomin E A,Uberuaga B P.(eds),Radiation Effects in Solids[M].Berlin :Springer Netherlands,2007,235:1568-2609.
  • 8Bisvert G.Self-diffusion of adatoms,dimers,and vaconcies on Cu(100)[J].Phys.Rev.B,1997,56:7643.

二级参考文献261

  • 1[221]Meakin P. Phys. Rev. A 1983,27:1495-1499.
  • 2[222]Yu B D and Oshiyma A. Phys. Rev. Lett 1994,72:3190-3193.
  • 3[223]Yu B D, Ide T and Oshiyma A. Phys. Rev. B 1994,50:14631-14637.
  • 4[224]Hwang I S, Chang T C and Tsong T T. Phys. Rev. Lett. 1998,80:4229-4232.
  • 5[225]Hwang I, Chang. T Tsong Tien T. Surf. Sci. 1998,410:L741-745.
  • 6[226]Chang T C, Hwang I S and Tsong T T. Phys. Rev. Lett. 1999,83:1191-11194.
  • 7[227]Michely T, Hohage M and Comsa G. in Surface diffusion:Atomistic and Collective Processes M C, Tringides and Scheffler M eds. NATO ASI-Series Plenum Press,1998.
  • 8[228]Xu W T, Hou J G and Wu Z Q. Solid State Comm. 1998,107:557-560.
  • 9[229]Liu B G, Wu J, Wang E G and Zhang Z Y. Phys. Rev. Lett. 1999,83:1195-1198.
  • 10[230]Mayer J and Behm R J. Surf. Sci. 1995,322:L275-279.

共引文献91

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部