期刊文献+

基于采样点曲面重构的拓扑算法的研究

A Topological Approach Research on Surface Reconstruction from Sample Points
下载PDF
导出
摘要 针对带噪声点的点云数据提出了一种曲面重构的新算法,称为TSR Topological Surface Reconstructor(拓扑曲面重构算法).这种算法避免了在很多重构算法中一般使用的如单元格标记以及距离函数近似的大量计算.定义在Delaunay四面体拓扑元素中的一个离散的Morse函数可以计算一个算法所使用的离散的梯度域,决定哪些面属于多面近似.离散Morse理论为该种方法提供了基础,它为算法提供了一个拓扑框架来导出一个曲面的分段线性近似.最后提供了一些重构的结果,并把TSR的性能与其它某些点集重构算法进行了比较. We described the proposed approach and introduced the reconstruction algorithm from sample points, called TSR topological surface reconstruction. This algorithm may avoid considerable computation typically employed in many reconstruction algorithms. Discrete Morse theory offers the fundamentals for such an approach, providing a topological framework for an algorithm to derive a piecewise linear approximation of the surface. A discrete Morse function defined on the topological elements of the Delaanay tessellation allows computing a discrete gradient field used by the algorithm to decide which faces belong to the polyhedral approximation. This topological approach towards reconstruction results in a low - cost and robust algorithm capable of handling multiple components and cavities. At last some rec.onstruction results are presented and the performance of TSR is compared with that of other reconstruction approaches for some standard point sets.
出处 《佳木斯大学学报(自然科学版)》 CAS 2008年第2期214-216,223,共4页 Journal of Jiamusi University:Natural Science Edition
关键词 拓扑 采样点 曲面重构 MORSE理论 topological sample points surface reconstruction Morse theory
  • 相关文献

参考文献11

  • 1Amenta,N.,Bern,M.W.,Surface Reconstruction by Voronoi filtering.Symposium on Computational Geometry,1998.39-48.
  • 2Aments,N,Choi,S,Dey T.K,Leekha,N,.ASimple Algorithm for Homeomorphic Surface Reconstruction.Int.J.Comput.Geom.Appl,2002,12(1-2):125-141.
  • 3Forman,R.Morse Theory for Cell Complexes.Adv.Math,1998,134(1):90-145
  • 4Bissonat,J D.Shape Reconstruction from Planar Cross-sections.Comput.Vis.Image,1988,44,1-29.
  • 5Ohtake,Y,Belynev,A,Alexa,M,Turk G,Seidel H.P.Multilevel Partitionof Unity Implicits.ACM Trans.Graph.2003,22(3):463-470.
  • 6Alexa,M.,Behr,J.,Coben-Or,D.,Fleishman,S.,Levin,D.,Silva,C.Computing and Rendering Point Set Surfaces.IEEE Trans.Vis Comput Graph.2003,9(1):3-15.
  • 7Edelsbrunner,H,Mucke E P.Three dimensional Alpha Shapes,ACM Trans.Graph,1994,13(1):43-72.
  • 8Amenta,N., Choi,S.,Dey T.K.,Leekha,N .A Simple Algorithm for Homeomorphic Surface Reconstruction.Int.J.Comput.Geom.Appl,2002,12(1-2),125-141.
  • 9Dey,T.K,Goswarni,S.Tight cocone:A Water-tight Surface Reconstruction.Tech.Rep .OSU-CISRC-12/02-TR31.The Ohio State University,2002,4(3-4),457-489.
  • 10Amenta,N., Choi,S.Kolluri,R.K.The Power Crust,Unions of Balls,and the Medial Axis Transform.Comput.Geom,2001,19(2-3),127-153.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部