期刊文献+

砷酸钠对秀丽线虫生殖细胞周期停滞和细胞凋亡的作用研究 被引量:5

Effect of Arsenate on Germ Cell Cycle Arrest and Apoptosis in Caenorhabditis Elegans
下载PDF
导出
摘要 背景与目的:砷在自然界主要以五价砷(AsV)的形式存在,是公认的致癌剂、致畸剂和致突变剂,但其遗传毒性作用机制还不十分清楚,为此,本文研究了砷酸钠对模式生物秀丽隐杆线虫的遗传毒性作用及其机制。材料与方法:分别以0.0、2.5、5.0、10.0和20.0mmol/L砷酸钠处理秀丽隐杆线虫,测定其对线虫平均后代数目、生殖细胞周期和细胞凋亡的影响。结果:在5.0~20.0mmol/L剂量范围内,砷酸钠暴露可导致线虫后代数目降低(P<0.05),在2.5~20.0mmol/L浓度下,砷酸钠可诱导线虫生殖细胞周期停滞和细胞凋亡,并具有显著的时间_剂量效应(P<0.05)。自由基淬灭剂二甲基亚砜(DMSO,0.1%)可抑制砷酸钠诱导的生殖细胞周期停滞,抑制砷酸钠诱导的细胞凋亡。结论:砷酸钠具有遗传毒性作用,可导致线虫生殖细胞凋亡和细胞周期的停滞。 BACKGROUND AND AIM: Inorganic arsenic is a ubiquitous carcinogen, teratogen and mutagen, where it occurs mainly in the pentavalent form in the aquatic environment. The genotoxic effects of arsenate to intact animals are still unclear. In order to understand the potential genotoxic effects of arsenate and the underlying mechanisms, the nematode Caenorhabditis elegans were employed in this study. The studies presented here investigated the effects and the underlying mechanisms of arsenate on the brood size, germ cell cycle arrest and apoptosis of C. elegans. MATERIALS: The C. elegans adult hermaphrodites were exposed to 0.0, 2.5, 5.0, 10.0 or 20.0 mmol/L of arsenate, the brood size, germ cell cycle arrest and apoptosis were assayed after exposure. RESULTS: From arsenate exposure of 5.0 to 20.0 mmol/L, the brood size was significantly smaUer(P 〈0.05). From the concentrations of 2.5 to 20.0 mmol/L, arsenate exposure caused germ cell cycle arrest and apoptosis in a dose-dependent manner(P 〈 0.05). Germ cell apoptosis could be detected as early as 6 h after arsenate exposure. The addition of dimethyl sulphoxide (DMSO) could significantly rescue arsenate-induced germ cell cycle arrest and partially reduced apoptosis. CNCLUSION: Arsenate exhibited genotoxic effects, causing germ cell cycle arrest and apoptosis in C. elegans.
出处 《癌变.畸变.突变》 CAS CSCD 2008年第2期131-134,共4页 Carcinogenesis,Teratogenesis & Mutagenesis
基金 杰出青年基金资助(10225526)
关键词 秀丽隐杆线虫 砷酸钠 细胞周期 细胞凋亡 Caenorhabditis elegans arsenate cell cycle apoptosis
  • 相关文献

参考文献16

  • 1ATSDR. Top 20 Hazardous Substances: ATSDR/ EPA Priority List for 1997 [S/OL] Atlanta, GA: Agency for Toxic Substances and Disease Registry, Atlanta, GA. (2006-11- 09) http ://www. atsdr, cdc. gov/cxcx3.html.
  • 2仙玲玲,杨磊.生物体抗砷机制的研究进展[J].中国地方病学杂志,2004,23(1):92-93. 被引量:91
  • 3Chapell WR, Beck BD, Brown K G, et al. Inorganic arsenic: a need and an opportunity to improve risk assessment [J] . Environ Health Perspect, 1997, 105(10) : 1060- 1067.
  • 4Hei TK, Liu SX, Waldren C. Mutagenicity of arsenic in mammalian cells: Role of reactive oxygen species [J]. PNAS USA, 1998,95(14) : 8103 - 8107.
  • 5Navarro PA, Liu L, Keefe DL. In vivo effects of arsenite on meiosis, preimplantation development, and apoptosis in the mouse [J]. Biol Reprod, 2004,70(4) :980- 985.
  • 6Ankeny RA. The natural history of Caenorhabditis elegans research [J]. Nat Rev Genet,2001,2(6) :474-479.
  • 7Brenner S. The genetics of Caenorhabditis elegans [J] Genetics, 1974,77 (1) : 71 - 94.
  • 8Thomas JH, Lockery S. Neurobiology in: hope I. A. (Eds), C. elegans a practical approach [M ] Oxford: Oxford University Press, 1999:143 - 179.
  • 9Gartner A, Milstein S, Ahmed S, et al. A conserved checkpoint pathway mediates DNA damage-induced apoptosis and cell cycle arrest in C. elegans [J] . Mol Cell, 2000, 5(3) :435- 443.
  • 10Kelly KO, Dernburg AF, Stanfield D, et al. Caenorhabditis elegans rash-5 is required for both normal and radiation-induced meiotic crossing over but not for completion of meiosis [J] . Genetics, 2000, 156(2) :617- 630.

二级参考文献20

  • 1Rosen BP. Family of arsenic transporters. Trends Microbiol,1999,7:207-212.
  • 2Abernathy CO, Liu YP, Longfellow D,et al. Arsenic: health effects, mechanisms of actions, and research issues. Environ Health Perspect, 1999,107: 593-597.
  • 3Makus JT,Robert W. Mechanisms involved in metalloid transport and tolerance acqusition. Curr Genet, 2001,40:2-12.
  • 4Rosen BP. Biochemistry of arsenic detoxification. FEBS Lett,2002,529: 86-92.
  • 5Gratti D, Mitra B, Rosen BP. Escherichia coli soft metal iontranslocating ATPases. J Biol Chem, 2000,275: 34009-34012.
  • 6Rosen BP. Transport and detoxification systems for transition metals,heavy metals and metalloids in eukaryotic and prokaryotic microbes.Comp Biochem Physiol A Mol Integr Physiol, 2002,133:689-693.
  • 7Willsky GR, Malamy MH. Characterization of two genetically separable inorganic phosphate transport systems in Escherichia coli.J Bacteriol, 1980,144:356-365.
  • 8Bun-ya M, Shikata K,Nakade S, et al. Two new genes, PHO86 and PHO87, involved in inorganic phosphate uptake in Saccharomyces cerevisiae. Curr Genet, 1996,29:344-351.
  • 9Lau WT, Howson RW, Malkus P, et al. Pho86p, an endoplasmic reticulum (ER) resident protein in Saccharomyces cerevisiae, is required for ER exit of the high-affinity phosphate transporter Pho84p. Proc Natl Acad Sci USA, 2000,97:1107-1112.
  • 10Sanders OI, Rensing C, Kuroda M,et al. Antimonite is accumulated by the glycerol facilitator GlpF in Escherichia coli. J Bacteriol, 1997,179:3365-3367.

共引文献90

同被引文献84

引证文献5

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部