期刊文献+

五个顶点的完全图的边同伦与delta顶点同伦分类

Edge-Homotopy and Delta Vertex-Homotopy Classification of Spatial Complete Graphs on Five Vertices
下载PDF
导出
摘要 研究了五个顶点的完全图K5的边同伦分类,证明了K5的两个空间嵌入是边同伦的,当且仅当它们有相同的α-不变量。并举例说明了对存在着无限多个边同伦而非delta顶点同伦的空间嵌入。 The edge-hcmotopy classification of the complete graph Ks on 5 vertices are studied in this paper. It has been proven that the two spatial emheddings of K5 are edge-homotopic, if and only if they have the same α-invariant. Also,an example is given to show that there are many infinite spatial embeddings of Ks up to delta vertex-homotopy which are mutually edge-homotopic.
出处 《西安理工大学学报》 CAS 2008年第1期119-121,共3页 Journal of Xi'an University of Technology
基金 西安理工大学科研基金资助项目(108-210715)
关键词 空间嵌入 α-不变量 delta顶点同伦 边同伦 spatial embedding α-invariant delta vertex-homotopy edge-homotopy
  • 相关文献

参考文献5

  • 1Motohashi T, Taniyama K. Delta Unknotting Operation and Vertex-homotopy of Spatial Graphs[C] // KNOTS'96 (Tokyo). River Edge, NJ : World Science Publishing, 1997. 185-200.
  • 2Nikkuni R. Edge-homotopy Classification of Spatial Complete Graphs on Four Vertices[J].Journal of Knot Theory and Its Ramifications, 2004,13 (b) : 763-777.
  • 3Nikkuni R. Delta Link-homotopy on Spatial Graphs[J]. Revista Mathematica Complutnse,2002 ,15(2) : 543-570.
  • 4Taniyama K. Cobordism, Homotopy and Homology of Graphs in R^3 [J]. Topology, 1994,33(3) :509-523.
  • 5Jones V, F. R., A Polynomial Invariant for Knots via Neumann Algebras[J]. Bulletin of the American Mathematical Society, 1985,12(1) : 103-111.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部