期刊文献+

两点边值问题三次B样条插值解法 被引量:1

Solving Two-Point Boundary Value Problem with the Cubic B-Spline Interpolation Method
下载PDF
导出
摘要 讨论了Ly(x):=y(″x)-p(x)y(′x)-q(x)y(x)=g(x)的两点边值问题的三次B样条插值解法.证明了该方法具有二阶收敛性和很好的稳定性.数值实验结果表明,该三次B样条方法比文献[8]和文献[9]的精度更高. In this paper, we consider two-point boundary value problem Ly(x): =y″(x)-p (x)y′(x)-q (x)y(x)=g(x) by the cubic B-spline interpolation method. This method is a second order convergent method and the stability is good are proved. At last, the numerical results show that the accuracy of the method is much better than the Ref. [8-9].
出处 《河南科学》 2008年第4期379-382,共4页 Henan Science
基金 广西自然科学基金(0575029) 广西民族大学研究生教育创新计划资助(gxun-chx0756)
关键词 两点边值 三次B样条插值 收敛性 稳定性 two-point boundary value cubic B-spline interpolation convergent stability
  • 相关文献

参考文献8

  • 1Greenspan D, Casulli V. Numerical analysis for applied mathematics[M]. Boston, MA: Addison-Wesley, 1998.
  • 2Manoj Kumar. A three-point finite difference method for a class of singular two-point boundary value problem[J]. J Comput Appl Math, 2002, 145: 89-97.
  • 3Ravi Kanth A S V, Reddy Y N. Higher order finite difference method for a class of singular boundary value problems [J]. Appl Math Comput, 2004, 155: 249-258.
  • 4Ravi Kanth A S V, Reddy Y N. Cubic spline for a class of singular two-point boundary value problems [J]. Appl Math Comput, 2005, 170: 733-740.
  • 5Ravi Kanth A S V, Vishnu Bhattaeharya. Cubic spline for a class of non21inear singular boundary value problems arising in physiology [.1]. Appl Math Comput, 2006, 174: 768-774.
  • 6Varah J M. A lower bound for the smallest singular value of a matrix[J]. Linear Algebra Appl, 1975, 11:3-5.
  • 7柯云泉.一类边值问题的样条解法[J].工程数学学报,1997,14(4):13-18. 被引量:7
  • 8Ogunfiditimi F O, Adeboye K R. Perturbed passage scheme for the solution of two-point boundary alue problems [J]. National Mathematical Centre Abuja Nigeria, 2005.

二级参考文献3

  • 1普伦特 P M,样条函数与变分方法,1980年,269页
  • 2团体著者,常微分方程数值解法,1979年
  • 3林长胜,硕士学位论文

共引文献6

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部