期刊文献+

双参数精确罚函数求解约束优化问题的FR共轭梯度法

An FR Conjugate Gradient Method for Solving Constrained Optimization on Exact Penalty Function with Two Parameters
下载PDF
导出
摘要 对于含约束不等式的最优化问题,给出一种双参数罚函数形式,提出了一个求解这种罚函数无约束优化问题的FR共轭梯度法,研究了它的收敛性.数值实验表明该算法是可行的. For optimizing constrained inequation, a two-parameter penalty function is given. And an FR conjugate gradient method for solving the unconstrained nonlinear penalty problem is proposed, its convergence is studied as well. The feasibility of the algorithm is illustrated with numerical examples.
作者 刘二永 王斌
出处 《徐州师范大学学报(自然科学版)》 CAS 2008年第1期30-32,共3页 Journal of Xuzhou Normal University(Natural Science Edition)
基金 国家自然科学基金重点资助项目(50534050)
关键词 最优化 精确罚函数 FR共轭梯度法 收敛性 optimization exact penalty function FR conjugate gradient method convergence
  • 相关文献

参考文献4

二级参考文献9

  • 1Rosenberg E. Globally convergent algorithm for convex progromming[J]. Mathmatics of Operations Research, 1981, 6(3):437~452.
  • 2Pinar M C,et al.On smoothingexact penalty functions for convex constrains optimization[J]. SIAM Journal on Optimization,1994,4:486~511.
  • 3Mongeau M,et al.Automatic decrease of the penalty parameter in exact penalty functions methods[J].European Journal of Operational Research,1995,83:686~699.
  • 4Rubinov A M,et al.Extened Lagrange and penalty functions in continuous optimization[J]. Optimization,1999,46(3):327~351.
  • 5Rubinov A M,et al.Decreasing functions with applications to penalization[J]. SIAM Journal On Optimization,1999,10(1):289~313.
  • 6Yang X Q,et al. A nonlinear lagrange approach to constrained optimization problems[J]. SIAM Journal on Optimization,2001,11(4):1119~1141.
  • 7孟志青.精确罚函数与交叉规划问题的研究[J].西安:西安电子科技大学,2003..
  • 8Lasserre J B. A globally convergent algorithm for exact penalty functions[J]. European Journal of Opterational Research,1981,7:389~395.
  • 9孟志青,胡奇英,汪寿阳.一种新的罚函数的精确罚定理[J].自然科学进展,2003,13(3):328-330. 被引量:9

共引文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部