期刊文献+

一类集值增生算子方程解的Ishikawa迭代程序

An Ishikawa Iterative Process for Operator Equation Involving Set-valued Accretive Mapping
下载PDF
导出
摘要 研究了一种Ishikawa迭代程序,在Banach空间中运用这种Ishikawa迭代程序研究了一类集值增生算子方程的近似解问题,该工作推广和改进了Noor[1]的相关结果. In this paper, an Ishikawa iterative process is introduced and studied. The process solved the problem of class of operator equation involving set-valued accretive mapping in Banach space. The results presented improved and extented the relative results of Noor[1].
出处 《阜阳师范学院学报(自然科学版)》 2008年第1期32-35,共4页 Journal of Fuyang Normal University(Natural Science)
基金 四川省高等教育改革工程人才培养质量和教学改革项目资助[2005]198
关键词 强增生集值映象 BANACH空间 强伪压缩映象 ISHIKAWA迭代 不动点 strongly accretive banach space ishikawa iterative strongly psuedocontractive mapping fixed point.
  • 相关文献

参考文献12

  • 1[1]Muhammad Aslam Noor,Themistocles M.Rassias,Three-step iteration for nonlinear accretive operator equations[J].Math.Anal Appl.274(2002):59-68.
  • 2[2]Nadler S B.Multi-valued Contraction mapping[J].Pacific J.Math.1969,30:475-488.
  • 3[3]Nan Jing Huang.Ishikawa and Mann Iterative Processes with Errors for Set-Valued Strongly Accretive and -Hemicontractive Mappings[J].Mathematical and Computer Modelling,2000.
  • 4周绍智.集值单调型算子的Mann迭代程序[J].高师理科学刊,2003,23(1):4-6. 被引量:1
  • 5[5]Glowinski R,Le Tallec P.Augemented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanic,SIAM,Philadelphia,1989.256-262.
  • 6[6]Haubruge S,Nguyen V H,Strodiot J J.Convergence analysis and applications of the Glowinski-Le Tallec splitting method for finding a zero of two maximal monotone operators[J].Optim.Theory Appl.97(3)(1998):645-673.
  • 7薛志群,胡雁玲.Mann迭代序列收敛的充要条件[J].河北轻化工学院学报,1997,18(4):20-23. 被引量:2
  • 8[8]Chang S S,Tan K K.Iteration processes for approximating fixed point of operator of monotone type[J].Bull Austral Math Soc,1998,57:443-445.
  • 9吴定平.Banach空间中非扩张映象的几个收敛定理[J].宜宾学院学报,2006,6(6):1-3. 被引量:2
  • 10宋义生,沈熙林,陈汝栋.集值非扩张映象不动点迭代收敛性[J].纺织高校基础科学学报,2005,18(1):23-25. 被引量:2

二级参考文献17

  • 1[1]S.Reich,On the asymptotic behavior of nonlinear semigroups and the range of accretive operators,J.Math.Appl.,79(1981),113-126.
  • 2[2]L.S.Liu,Ishikawa and Mann iterative processes with errors for nonlinear strongly accretive mappings in Banach space,J.Math.Anal.,194(1995),114-125.
  • 3[3]S.S.Chang,On Chidume's open questions and approximation solutions of multivalued strongly accretive mappings equations in Banach spaces,J.Math.Ana.Appl.,216(1997),94-111.
  • 4[4]S.Reich,Strong convergence theorems for resolvents of accretive mappings in Banach spaces,J.Math.Anal.Appl.,75(1980),287-292.
  • 5[5]S.S.Chang,Viscosity approximation methods for a finite family of nonexpansive mappings in Banach spaces,J.Math.Anal.Appl.,2006(in press).
  • 6[6]S.S.Chang and D.P.Wu,Some convergence theorems for asymptotically nonexpansive mappings in Banach spaces,J.Math.Anal.Appl.,2006(in press).
  • 7[7]S.Reich,Some problems and results in point theory,Contem.Math.,21(1983),179-187.
  • 8[8]S.Reich,Some fixed point problems,Atti Accad.Naz.Lincei,57(1974),194-198.
  • 9[9]S.Reich,Approximating fixed points of nonexpansive mappings,Pan.American Math.J.,4(2) (1994),23-28.
  • 10[10]N.Shioji and W.Takahashi,Strong convergence of approximated sequence for nonexpansive mappings,Proc.Amer.Math.Soc.,125:12(1997),3641-3645.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部