期刊文献+

基于小波变换和BP神经网络的润滑油水分测量研究 被引量:4

THE RESEARCH OF MEASURING THE WATER CONTENT IN THE LUBRICATING OIL BASED ON WAVELET TRANSFORM AND BP NEURAL NETWORK
下载PDF
导出
摘要 基于小波变换和BP神经网络理论,构造了一个应用于润滑油水分含量判断的BP神经网络分类器。通过PULSE系统对7种不同浓度润滑油加热后发生微爆效应时产生的声信号进行采集,并进行小波变换,提取能量分布特征信号,最后根据BP神经网络分类器对声信号进行分类并半定量判断润滑油中的水分含量。实验结果表明,该方法能有效地判断润滑油中水分含量是否合格,为研究润滑油水分含量的现场测量提供了新的思路和方法。 A BP neural network classifier for judging the water content in lubricating oil was constructed based on the wavelet transform and the theory of BP neural network. The micro - explosion signal of seven different lubricating oils was acquired by PULSE system and the characteristics of energy distribution was extracted after wavelet transform. Finally, the BP neural network classifier was used to judge the water content in the lubricating oil. The experimental result showed that this method is an efficient method, offering a new notion and method for researching the measurement of water content in the lubricating oil on - line.
出处 《润滑油》 CAS 2008年第2期46-50,共5页 Lubricating Oil
关键词 润滑油 水分 爆裂法 小波变换 神经网络 lubricating oil water content crackle test wavelet transform neural network
  • 相关文献

参考文献7

二级参考文献22

共引文献153

同被引文献25

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部