期刊文献+

基于独立分量分析的声发射信号去噪方法 被引量:8

Research on Denoising in Acoustic Emission Signals Based on Independent Component Analysis
下载PDF
导出
摘要 针对声发射信号比较微弱,实际检测信号中常含有强背景噪声的问题,提出了基于独立分量分析(ICA)的信号去噪方法.该方法首先对观测信号进行FastICA分解,得出多导独立分量;再根据一定的时域及频域先验知识,将独立分量中的噪声信号通道置零,利用解混矩阵反演出去噪后的信号.文中通过断铅声模拟发射信号去噪仿真和埋地水管泄漏声发射信号去噪实验,对该方法进行定性和定量分析.结果表明,与常规的去噪方法比较,ICA去噪方法受噪声强度影响较小,能够得到更高的信噪比和更好的相关系数,有利于提高埋地水管泄漏点的定位精度. A method based on Independent Component Analysis (ICA) to denoise the acoustic emission signals is presented to overcome the disadvantage of AE signals that they are always very weak and strongly affected by the background noises. Firstly, the observed signals are decomposed of several independent components by FastlCA, then, set the noise component to be zero according to some priori knowledge in time domain or frequency domain of the signals. Finally, the denoised signals are figured out using the decompose matrix. The examples of denoising the acoustic emission signals of pencil break and water pipe leak using the ICA are shown to evaluate the effect of this method. The simulation and experiments indicated that the denoising method based on ICA can get higher signal-noise rate and better correlation coefficient compared with wavelet denoising method and thus improved the precision of water pipe leak location.
出处 《江南大学学报(自然科学版)》 CAS 2008年第1期55-59,共5页 Joural of Jiangnan University (Natural Science Edition) 
关键词 声发射 独立分量分析 小波分析 去噪 acoustic emission independent component analysis wavelet analysis denoising
  • 相关文献

参考文献10

  • 1耿荣生,沈功田,刘时风.声发射信号处理和分析技术[J].无损检测,2002,24(1):23-28. 被引量:164
  • 2Comon P. Independent component analysis: a new concept? [J]. Signal Processing, 1994, 36 (3):287-314.
  • 3Hyvarinen A, Karhunen J, Oja E. Independent Component Analysis [ M ] , New York: John Wiley & Sons Inc, 2001 : 147-289.
  • 4Cardoso J F. A blind beam forming for non-Gaussian signals [ J ]. IEEE Proceedings-F, 1993, 140 (6) :362-367.
  • 5Bell A J, Sejnowski T J. An information-maximization approach to blind separation and blind deconvolution [ J ]. Neural Computation, 1995 ( 7 ) : 1129-1159.
  • 6Lee T W, GirolamiM, Sejnowski T J. Independent component analysis using an extended infomax algorithm for mixed sub- Gaussian and super-Gaussian sources [ J ]. Neural Computation, 1999, 11 (2) .409-433.
  • 7Aapo Hyvarinen. Independent component analysis :algorithms and application [ J ] . Neural Networks, 2000, 13 (4-5) :411- 430.
  • 8Terchi A, Au Y H J. Acoustic emission signal processing[ J]. Measurement and Control,2001,4(8) :240-244.
  • 9Donoho D L. Denoising by soft-thresholding [ J]. IEEE Trans on Inform Theory, 1995, 41 (5) :613-627.
  • 10Emir U E, Akqul C B, Wavelet Denoising. ICA denoising for functional optical imaging [ C ]///Conference Proceedings First International IEEE EMBS Conference on Neural Engineering. Capri Island, Italy:[ s. n. ] ,2003 : 384-387.

二级参考文献5

共引文献163

同被引文献159

引证文献8

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部