期刊文献+

带指数增长型Neumann边界条件的Laplace方程解的存在性

The existence for the solution of the Laplace equation with an exponential Neumann boundary condition
下载PDF
导出
摘要 该文应用Mini-Max方法和Blow-up分析,证明了当参数在一个取值区间内时,一类Laplace方程在非线性指数增长型Neumann边界条件下解的存在性结论。 Using Mini-Max method and Blow-up analysis, the existence for the solution of a class of the Laplace equation with an exponential Neumann boundary condition was given when the parameter lies in a certain interval.
作者 张懿彬
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2008年第3期48-53,57,共7页 Journal of Shandong University(Natural Science)
基金 浙江林学院校科研发展基金资助项目(2351000619)
关键词 LAPLACE方程 NEUMANN边界条件 临界点 Mini-Max方法 Blow-up分析 Laplace equation Neumann boundary condition critical point Mini-Max method Blow-up analysis
  • 相关文献

参考文献7

  • 1AUBIN T. Nonlinear analysis on manifolds[M]. Springer-Verlag, 1982.
  • 2LIU Pan. A morser-trudinger type inequality and Blow-up analysis on Riemann surfaces[ D]. Germany: Der Fakultat Fur Matheatik Ang Informatik Der Universitat Leipzig, 2001.
  • 3CHANG Kungching, LJU Jiaquan. A prescribing geodesic curvature problem[J]. Math Z, 1996, 223(2):343-365.
  • 4OSGOOD B, PHILLIPS R, SARNAK P. Extremals of determinants of Laplacians[J]. J Funct Anal, 1988, 80(1):148-211.
  • 5HAMZA H. Surles transformations confonnes des varietea Riemanninnes a bord[J]. J Funct Anal, 1990, 92:403-407.
  • 6STRUWE Michael. Multiple solutions to the Dirichlet problem for the equation of prescribed mean curvature[M]. Boston: Academic Press, 1990: 639-666.
  • 7GUO Yuxia, LIU Jiaquan. Blow-up analysis for solutions of the Laplacian equation with exponential Neumann boundary condition in dimension two[J]. Commun Contemp Math, 2006, 8(6):737-761.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部