期刊文献+

中心近邻嵌入学习算法的人脸识别研究 被引量:2

Learning Algorithm of Center Based Neighborhood Embedding for Face Recognition
下载PDF
导出
摘要 针对人脸识别问题,提出了一种中心近邻嵌入的学习算法,其与经典的局部线性嵌入和保局映射不同,它是一种有监督的线性降维方法。该方法首先通过计算各类样本中心,并引入中心近邻距离代替两样本点之间的直接距离作为权系数函数的输入;然后再保持中心近邻的几何结构不变的情况下把高维数据嵌入到低维坐标系中。通过中心近邻嵌入学习算法与其他3种人脸识别方法(即主成分分析、线形判别分析及保局映射)在ORL、Yale及UMIST人脸库上进行的比较实验结果表明,它在高维数据低维可视化和人脸识别效果等方面均较其他3种方法取得了更好的效果。 In this paper,a novel learning algorithm called center based neighborhood embedding(CNE) is proposed to deal with face recognition. Unlike the classical methods such as local linear embedding(LLE) and local preserving projection (LPP) ,CNE is a supervised linear dimensionality reduction method. It first computes centers of all sample classes. The input of the weight function between two samples was replaced by center based neighborhood (CN) distance. Then, the high-dimensional data are embedded into a low-dimensional space with preserving the CN geometric structure. The CNE approach is compared with principle component analysis (PCA) , linear discriminant analysis (LDA) and local preserving projection(LPP) on ORL,Yale and UMIST databases. Experiments demonstrate the proposed method is superior to other three methods in terms of both lower-dimensional visualization and recognition accuracy.
出处 《中国图象图形学报》 CSCD 北大核心 2008年第4期691-695,共5页 Journal of Image and Graphics
关键词 人脸识别 中心近邻嵌人 有监督学习 线性降维 face recognition, center based neighborhood embedding,supervised learning, linear dimensionality reduction
  • 相关文献

参考文献11

  • 1Turk M,Pentland A. Eigenfaees for reeognition[J]. Journal Cognitive Neuroseienee, 1991,3( 1 ) : 71-86.
  • 2Murase H, Nayar S K. Viasual learning and recognition of 3-D objects from appearance [ J]. International Journal of Computer Vision, 1995, 14(1) : 5 -24.
  • 3Belhumeur P,Hespanha J, Kriegman D. Eigenfaces vs. Fisherfaces: recognition using class specific linear projection [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997,19 (7) : 711-720.
  • 4Chang Y, Hu C,Turk M. Manifold of Facial Expression [ A ]. In: Proceeding of IEEE International Workshop on Analysis and Modeling of Faces and Gestures [ C ] , Nice, France,2003:203 - 205.
  • 5Rowels S T, Saul L K. Nonlinear dimensionality reduction by locally linear embedding[J]. Science ,2000,290 : 2323 - 2326.
  • 6Saul L K ,Roweis S T. Think globally,fit locally:unsupervised learning of low dimensional manifolds [ J ]. Machine Learning Researeh, 2003,4(6) :119-155.
  • 7Tenenbaum J B, Silva V De, Langford J C. A global feometrie framework for nonlinear dimensionality reduction [ J ]. Science,2000,290 : 2319 - 2322.
  • 8Belkin M, Niyogi P. Laplacian eigenmaps for dimensionality reduction and data representation[J]. Neural Computation,2003,15(6) :1373 - 1396.
  • 9He X,Yang S,Hu Y,et al. Face recognition using laplacianfaces[ J]. IEEE Transanctions on Pattern Analysis and Machine Intelligence, 2005,27 ( 3 ) : 328 - 340.
  • 10He X, Niyogi P. Locality Preserving Projections [ A ]. In : Proceedings Conferenee of Advanees in Neural Information Proeessing Systems [ C ], Vaneouver, Canada,2003 : 321 - 328.

同被引文献17

  • 1王卫东,郑宇杰,杨静宇.具有动态调节功能的Fisherface方法[J].计算机科学,2006,33(5):188-190. 被引量:1
  • 2Kouzani A Z.Locating human faces within images.Computer Vision and Image Understaning,2003,91(2).
  • 3韩超魏,等.嵌入式Linux上的C语言编程实践[M].北京:电子工业出版社,2009.
  • 4范燕,吴小俊,祁云嵩,张晓如,宋晓宁.基于结构化Fisherface的人脸识别新方法[J].江苏科技大学学报(自然科学版),2007,21(5):69-72. 被引量:4
  • 5Turk M,Pentland A. Eigenfaces for recognition[J].Journal of Cognitive Neuroscience,1991,(01):71-86.
  • 6Belhumeur P,Hespanha J,Kriegman D. Eigenfaces vs.Fisherfaces:recognition using specific linear projection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1997,(07):711-720.doi:10.1109/34.598228.
  • 7Roweis S T,Saul L K. Nonlinear dimensionality reduction by locally linear embedding[J].Science,2000,(5500):2323-2326.
  • 8Belkin M,Niyogi P. Laplacian Eigenmaps for dimensionality reduction and data representation[J].Neural Computation,2003,(06):1373-1396.doi:10.1162/089976603321780317.
  • 9Tenenbaum J B,De S V,Langford J C. A global geometric framework for nonlinear dimensionality reduction[J].Science,2000,(5500):2319-2323.
  • 10He X F,Yan S C,Hu Y X. Face recognition using laplacianfaces[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,(03):328-340.doi:10.1109/TPAMI.2005.55.

引证文献2

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部