期刊文献+

基于流形学习和混合模型的视频摘要方法 被引量:1

Video Abstraction Based on Manifold Learning and Mixture Model
下载PDF
导出
摘要 视频摘要是进行视频浏览、视频检索、视频索引等视频应用的前提,而且视频摘要类似于文本的摘要,也是对视频内容的一个简短概括。为了自动获得既包含视频的主要信息,而冗余信息又少的视频摘要,提出了一种基于流形学习和有限混合模型的自动视频摘要方法。该方法通过对视频序列进行流形建模,首先得到视频场景的初次分割;然后对包含内容较多的场景,使用等距降维方法计算视频帧的特征向量;最后将视频帧的特征向量输入到混合模型进行聚类分析,得到更细粒度的摘要结果。为了实现视频摘要的自动处理,所采用的混合模型需要具有模型选择功能。混合模型的聚类结果和流形建模的结果共同构成了视频摘要。视频分割片段的实验结果表明,在不需人为干预的情况下,所提供的视频摘要不仅包含视频主要内容,而且冗余信息少。 Techniques for video abstraction has attracted tremendous attention for its application in video browsing, video indexing ,video retrieval and so on. Video abstraction is brief summary of the video content like the text abstraction. In the paper, an automatic method for video abstraction is presented which is based on manifold modeling and mixture model. Man- ifold modeling is applied to generate the scene manifold of the video, Isomap is used to reduce the dimension of the video frames in larger scenes and the 10w dimension vectors are put into the mixture model with model selection to complete clus- ter analysis. Because mixture model with model selection can adapt to the data from any distribution, it is applied to gener- ate the video abstraction automatically. The results from manifold modeling together with those from mixture model constitute the abstraction results. The experiments present the abstraction with less redundance,which demonstrates the effective and efficiency of the proposed method.
出处 《中国图象图形学报》 CSCD 北大核心 2008年第4期735-740,共6页 Journal of Image and Graphics
基金 国家自然科学基金项目(60772122) 安徽省教育厅自然科学研究重点项目(KJ2007A045)
关键词 视频摘要 流形学习 等度降维 模型选择 混合模型 video abstraction, manifold learning, isomap, model selection, mixture model
  • 相关文献

参考文献11

  • 1Dimitrova N, Zhang H J, Shahray B, et al. A applicaitions of video content analysis and retrieval[J ]. IEEE Transactions on Multimedia, 2002,9 (3) :42 - 55.
  • 2Ngo C W, Ma Y F, Zhang H J. Video summarization and scene detection by graph modeling [ J ]. IEEE Transactions on Circuits and Systems for Video Technology,2005,15 ( 2 ) :96 - 305.
  • 3Mundur P, Rao Y, Yesha Y. Keyframe-based video summarization using Delaunay Clustering [ J ]. In : International Journal on Digital Libraries,2006,6 (2) :219 - 232.
  • 4Sebe N,Lew M S,Smeulders A W M. Video retrieval and summarization [ J ]. Computer Vision and Image Understanding, 2003,92 ( 2 ) : 141 - 146.
  • 5Weinberge K Q, Saul L K. Unsupervised learning of image manifolds by semidefinite programming [ A ]. In: Proceedings of International Conference on Computer Vision and Pattern Recognition ( CVPR2004 ) [ C ] , Washton, USA ,2004,2:988 - 995.
  • 6Souvenir R, Pless R. Manifold clustering [ A ] , In: Proceddings of International Conference on Computer Vision ( ICCV2005 ) [ C ], Beijing, China,2005,1:648 - 653.
  • 7Roweis S T, Saul L K. Nonlinear dimensionality reduction by locally linear embedding [ J ]. Science ,2000,290 ( 5500 ) :2323 - 2326.
  • 8Tenenbaum J B, Silva V de, Langford J C. A Global geometric framework for nonlinear dimensionality reduction[ J ]. Science,2000, 290 (5500) :2319 - 2323.
  • 9Pless R. Using isomap to explore video sequences [ A ]. In:Proceedings of International Conference on Computer Vision ( ICCV2003 ) [ C ], Nice, France ,2003,1 : 1433 - 1440.
  • 10Jain A K,Figueiredo M A F. Unsupervised selection and estimation of finite mixture model[ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence ,2002,24 ( 3 ) :381 - 396.

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部