期刊文献+

基于等高线的图像特征表达 被引量:2

Feature Representation of Natural Images Based on Contours
下载PDF
导出
摘要 结合多尺度图像分解技术和等高线理论提出了一种图像特征表达方法.该方法的独特之处在于将经验模态分解技术应用于图像的梯度模,而不是直接应用于图像本身.对梯度模图像进行经验模态分解,获得表示图像不同尺度下变化信息的固有模态函数,取携带丰富图像特征的前两个固有模态函数进行叠加,对叠加后的固有模态函数求取等高线,以实现对图像特征的提取和表达.实验结果表明,这种图像特征表达方法,不仅可以捕获图像中不同灰度变化属性信息,而且可以获得图像的几何结构,对图像的弱特征信息也有较好的表示能力. An approach of image feature representation that combines the multi-scale image decomposition technique and contour theory is proposed. Its advantage lies in the fact that the empirical mode decomposition technique is applied to the gradient magnitude of the image, not to the image directly. The gradient magnitude image is decomposed by the empirical mode decomposition technique to obtain a number of intrinsic mode functions that capture the gray level change information under different scale of the image. In order to represent the features of the image perfectly, the first two intrinsic mode functions are summed and the results are described by contours. The experiment results show that the proposed representation method for image features not only captures the gray level change information under different scale of image, but also catches the geometric structure information of image, and the weak features of an image can be expressed better.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2008年第4期385-388,394,共5页 Journal of Xi'an Jiaotong University
基金 国家自然科学基金资助项目(60405004) 国家高技术研究发展计划资助项目(2006AA01Z192) 陕西省教育厅科学研究计划资助项目(07JK328)
关键词 经验模态分解 固有模态函数 等高线 图像特征 特征表达 empirical mode decomposition intrinsic mode function contour image feature feature representation
  • 相关文献

参考文献8

  • 1OPPENHEIM A, SCHAFER R. Discrete-time signal processing [M]. 2nd ed. Upper Saddle River, NJ, USA: Prentice Hall, 1999.
  • 2ROBLES-KELLY A, GOECKE, R. A wavelet-based approach to image features stability assessment [C]// Proceedings of the 2006 Conference of Computer Vision and Pattern Recognition Workshop. New York, USA: IEEE Computer Society, 2006: 25-32.
  • 3HUANG N E, SHEN Z, LONG S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis [C] // Proceedings of Royal Society: A. London, UK: The Royal Society, 1998: 903-995.
  • 4HAN Chunming, GUO Huadong, WANG Changlin, et al. A new muhiscale edge detection technique [C]// IEEE International Geoscience and Remote Sensing Symposium. Piscataway, USA: IEEE, 2002: 3402- 3404.
  • 5HE Lulu, WANG Hongyuan. Spatial variant image filtering based on bidimensional empirical mode decom-position[C]//lath International Conference on Com- puter Vision and Pattern Recognition. Piscataway, USA: IEEE, 2006: 1196-1199.
  • 6LINDERHEDA. Compression by image empirical mode decomposition [C]//IEEE International Conference on Image Processing, Piscataway, USA: IEEE, 2005 : 553-556.
  • 7NUNES J C, BOUAOUNE Y, DELECHELLE E, et al. Image analysis by bidimensional empirical mode decomposition [J]. Image and Vision Computing, 2003, 21(12) : 1019-1026.
  • 8NUNES J C, GUYOT S, DELECHELLE E. Texture analysis based on local analysis of bidimensional empirical mode decomposition [J]. Machine Vision and Application, 2005, 16(3):177-188.

同被引文献11

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部