期刊文献+

基于人工神经网络下的图像识别的研究 被引量:11

Research on Image Recognition Based on Artificial Neural Network
下载PDF
导出
摘要 主要利用人工神经网络的理论知识研究在图像识别中的应用为目的,研究图像识别中图像分割的技术,同时详细分析了多层前馈神经网络的描述及BP算法工作过程。介绍隐层的选择及隐层神经元数选择的一些经验方法。针对BP算法存在的问题,提出加可变动量因子的BP算法,通过对网络训练过程参数调整以及增加可变动量因子等方面进行优化改进,实验证明加快了训练速度,改善了BP网络的学习效果。 By using the knowledge of artificial neural network,the application and image segmentation im image recognition are researched,the multi- layer feedforward neural rietwork and process of BP algorithm are analysed in a detail. Sorne methods of hidden tier and hidden tier neuron chosen are introduced. Aiming at Problems of BP,variable factor BP algorithm is proposed. By adjusting network training process parameter and optimizing variable factor, the experiment proves that training speed is incteased,study effect of BP network is improved.
出处 《现代电子技术》 2008年第8期127-130,134,共5页 Modern Electronics Technique
关键词 人工神经网络 BP神经网络 图像分割 artificial neural network BP neural network image segmentation
  • 相关文献

参考文献7

  • 1Yuan C, Niemann H. Neural Networks for Appearance- based 3 -D Object Recognition[J]. Neuro Computing,2003, 51:249 - 264.
  • 2Miller M I. Conditional Mean Estimation via Jump - diffusion Processes in Ultiple Target Tracking/Recognition[J] IEEE Transactions on Signal Processing, 1995,43(11): 2 678-2 690.
  • 3宋锦萍,职占江.图像分割方法研究[J].现代电子技术,2006,29(6):59-61. 被引量:10
  • 4Raffaele Parisi. A Generalized l.earning Paradigm Exploiting the Structure of Feedforward Neural Networks [J]. IEEE Transactions on Neural Networks, 1996, 7 (fi) : 1 450 - 1 459.
  • 5Hu Xiao, Guo Anehen. Efficient Back- propagetion Learning Using Optimal Learning Rate and Momentum[J]. Neural Networks, 1997,10(3) : 517 - 527.
  • 6穆文全,廖晓峰,虞厥邦.基于遗传算法和BP算法的多层感知机杂交训练算法[J].电子科学学刊,1997,19(2):190-194. 被引量:15
  • 7John J, Mckeown. Some Numerical Aspects of the Training Networks[J]. Proceedings IEEE, 1996,84(10):1 562 - 1 568.

二级参考文献20

  • 1练玉来,耿军雪.遗传算法在二维熵图像分割中的应用[J].现代电子技术,2004,27(15):25-27. 被引量:7
  • 2邓世伟,袁保宗.基于数学形态学的深度图像分割[J].电子学报,1995,23(4):6-9. 被引量:22
  • 3章毓晋.图像分割[M].北京:科学出版社,2001..
  • 4Rout S,Srivastava S P,Majumdar J.Multi - modal Image Segmentation Using a Modified Hopfield Neural Network[J].Pattern Recognition,1998,31 (6):743 - 750.
  • 5Vilarino D L,Brea V M,Cabello D.Discrete - time CNN for Image Segmentation by Active Contours[J].Pattern Recognition Letters,1998,19(8) :721 - 734.
  • 6Wang Y,Adali T,Kung S Y.Quantification and Segmentation of Brain Tissues from MR Images - a Probabilistic Neural Network Approach [J].IEEE Transactions on Image Processing,1998,7(8).
  • 7Cesmeli E.Texture Segmentation Using Ganssian Markov Random Fields and Neural Oscillator Networks [J].IEEE Transactions on Neural Networks,2001,12(2):394 - 404.
  • 8Dekruger D,Hunt B R.Image Processing and Neural Networks for Recognition of Cartographic Area Features[J].Pattern Recognition,1994,27 (4):461 - 483.
  • 9Osher S J,Rudin L I.Feature - oriented Image Enhancement Using Shock Filters[J].SIAM Journal Numerical Analysis,1990,27 (4) :919 - 940.
  • 10Perona P,Malik J.A Scale Space and Edge Detection Using Anisotropic Diffusion[J].IEEE Transactions on Pattern Analysis and Machine Intelligance,1990,12(7) :629 - 639.

共引文献23

同被引文献42

引证文献11

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部