期刊文献+

分数阶Rossler混沌系统的模糊同步控制 被引量:4

Fuzzy Synchronization Control of Fractional-order Rossler Chaotic Systems
下载PDF
导出
摘要 采用分数阶T-S模糊模型对分数阶Rossler混沌系统建模.使用并行分布式补偿方法设计模糊状态反馈控制器,使得闭环系统极点位于稳定区域内,从而保证闭环系统满足渐近稳定性条件.利用所设计的模糊状态反馈同步控制器实现了两个具有不同初始条件的分数阶Rossler混沌系统的同步.数值仿真结果表明该方案的有效性. The fractional-order Rossler chaotic systems are modeled using fractional-order T-S fuzzy model.The parallel distributed compensation method is used to design the fuzzy state feedback controller to enable poles of the closed loop systems to be placed inside the stability zone,thus satisfying the asymptotical stability requirements of the closed loop systems.Synchronization of two fractional-order Rossler chaotic systems with different initial states is achieved by the designed fuzzy state feedback synchronization controller.The effectiveness of the proposed scheme is demonstrated with numerical simulation results.
出处 《信息与控制》 CSCD 北大核心 2008年第2期129-134,共6页 Information and Control
基金 湖南省教育厅青年基金资助项目(05B016) 福建省自然科学基金资助项目(2006J0017)
关键词 分数阶微分系统 Rossler混沌系统 模糊控制 混沌同步 fractional-order differential system Rossler chaotic system fuzzy control chaos synchronization
  • 相关文献

参考文献20

  • 1Bagley R L, Calico R A. Fractional order state equations for the control of viscoelastically damped structures [ J ]. Journal of Guid- ance, Control, and Dynamics, 1991, 14(2) : 304-311.
  • 2Ichise M, Nagayanagi Y, Kojima T. An analog simulation of noninteger order transfer functions for analysis of electrode processes [J]. Journal of Electroanalytical Chemistry, 1971, 33(2): 253 - 265.
  • 3Mandelbrot B. Some noises with 1/f spectrum, a bridge between direct current and white noise [ J ]. IEEE Transactions on Information Theory, 1967, 13(2) : 289-298.
  • 4Heaviside O. Electromagnetic Theory [M]. New York, USA: Chelsea Publishing, 1971.
  • 5Hartley T T, Lorenzo C F, Qammer H K. Chaos in a fractional order Chua's system [ J ]. IEEE Transactions on Circuits and Systems Ⅰ: Fundamental Theory and Applications, 1995, 42(8 ) : 485 - 490.
  • 6Arena P, Caponetto R, Fortuna L, et al. Chaos in a fractional order Duffing system [ A]. Proceedings of the European Conference on Circuit Theory and Design [C]. Italy: Stresa, 1997. 1259 - 1262.
  • 7Li C G, Chen G R. Chaos and hyperchaos in the fractional-order Rossler equations [ J ]. Physica A: Statistical Mechanics and Its Applications, 2004, 341(1 -4): 55-61.
  • 8Li C G, Chen G R. Chaos in the fractional order Chen system and its control [ J ]. Chaos, Solitons and Fractals, 2004, 22 (3) : 549 - 554.
  • 9高心,虞厥邦.Chaos and chaotic control in a fractional-order electronic oscillator[J].Chinese Physics B,2005,14(5):908-913. 被引量:14
  • 10Ahmad W M, Harb A M. On nonlinear control design for autonomous chaotic systems of integer and fractional orders [ J ]. Chaos, Solitons and Fractals, 2003, 18(4) : 693-701.

二级参考文献31

  • 1Yu Y G and Zhang S C 2002 Chin. Phys. 11 1249.
  • 2Podlubny I 1999 Fractional Differential Equations (New York: Academic).
  • 3Charef A et al 1992 IEEE Trans. Autom. Contr. 37 1465.
  • 4Elwakil A S and Kennedy M P 2001 IEEE Trans. CAS-I.48 362.
  • 5Lu J H et al 2002 Chin. Phys. 11 12.
  • 6Li S H and Tian Y P 2003 Chin. Phys. 12 590.
  • 7Hua C C and Guan X P 2004 Chin. Phys. 13 1391.
  • 8Li Z and Han C Z 2002 Chin. Phys. 11 666.
  • 9Yu S Met al 2004 Chin. Phys. 13 317.
  • 10Ott E et al 1990 Phys. Rev. Lett. 64 1196.

共引文献15

同被引文献32

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部