摘要
采用弹性-粘塑性模型对粘塑性介质中反平面剪切动态扩展裂纹端的应力变场进行了渐近分析.假定在位移函数为u=r^(1-δ)g(θ)的情况下,该裂纹尖端的应力应变场具有r^(-δ)幂函数奇异性时,得到了裂纹尖端应力应变场的渐近方程.通过数值计算得到了各种M^2和α情况下裂纹尖端的应力场T_θ(θ)的T_r(θ)的角分布曲线.
Based on a new elastic-Viscoplastic mode ,the asymptotic behaviour of an antiplance shear Crack-tip to dynamic propagation is studied.In the case of displacement u=γ^(1-δ) g(θ),I.e.when the stress and strain field of the crack-tip has γ^(1-δ) power-law singularity ,the asymptotic equations of stress and strain are given at the crack-tip.The curves of The stress fields of the crack-tip T_θ(θ)and T_I(θ)Angular distribution curves are given for various M^2 and α.
关键词
粘性系数
粘塑性
奇异性
裂纹
viscous coefficient
viscoplastic
singularity
dynamic propagating crack