期刊文献+

多孔介质中盐指现象的数值模拟 被引量:5

Numerical simulation of salt finger convection in porous media
原文传递
导出
摘要 运用基于杂交网格的高精度数值方法研究了多孔介质中的盐指现象.该算法将基于边界拟合坐标下的高精度有限差分法和高精度的泊松方程快速求解器有效地结合在一起,从而达到提高整体的计算精度、计算效率和稳定性的目的.通过比较不同孔隙率的多孔介质对盐指对流的传热传质效应的影响,发现在标准孔隙率较低的多孔介质中,盐度扩散的速度明显比热扩散的速度快,盐指很快触及上下壁面,使得上下层的盐度梯度迅速减小,这是与非多孔介质具有明显差异之处. The dual-mesh hybrid numerical method is used to investigate the salt finger convection, as well as the heat and mass transfer, in saturated porous media. It is found that at low normalized porosity of porous media, saline diffusion is much faster than thermal diffusion. The fingers grow straightly to the top and bottom walls, which would lessen the saline gradient of stratified system. Also, it is indicated that the hybrid method is perfect for dealing with small scale convection in porous media because of its great veracity, efficiency and stability.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2008年第4期2306-2313,共8页 Acta Physica Sinica
基金 国家自然科学基金(批准号:40476012)资助的课题~~
关键词 多孔介质 双扩散对流 盐指 porous media, double diffusive convection, salt finger
  • 相关文献

参考文献15

  • 1於崇文.地质系统的复杂性——地质科学的基本问题(Ⅱ)[J].地球科学(中国地质大学学报),2003,28(1):31-40. 被引量:11
  • 2Chen F 1992 J. Appl. Phys .71 5222
  • 3Zhao P, Chen C F 2001 Int. J. Heat Mass Trans. 44 4625
  • 4Chen F, Chen C F 1993 Int. J. Heat Mass Trans. 36 793
  • 5Mamou M, Vasseur P, Bilgen E A 1998 Int. J. Heat Mass Trans. 41 1513
  • 6Schoofs S, Trompert R A, Hsnsen U 2000 Phys. Earth Planet. Inter. 118 205
  • 7Otero J, Dontcheva L, Johnston H, Worthing R, Kurganov A, Petrova G, Doering C 2004 J. Fluid Mech. 500 263
  • 8Kalliadasis S, Yang J 2004 Phys. Fluids 16 5
  • 9Dong P, Feng S D, Zhao Y 2004 Chin. Phys. 13 434
  • 10Hughes J D, Vacher H L, Sat,ford W E 2005 Water Resour. Res. 41 1

二级参考文献8

  • 1Sornette D. Critical phenomena in natural sciences [M]. Berlin: Springer-Verlag, 2000. 1-433.
  • 2Turcotte D L, Stewart C A, Huang J. Routes to chaos in the solid earth [A]. In: Yuen D A, ed. Chaotic processes in the geological sciences [C]. Berlin: Springer-Verlag, 1992. 89-109.
  • 3Turcotte D L. Fractals and chaos in geology and geophysics [M]. Second Edition. Cambridge: Cambridge University Press, 1997.269-278.
  • 4Yuen D A, Malevsky A V. Strongly chaotic Newtonian and non-newtonian mantle convection [A]. In: Yuen D A, ed. Chaotic processes in the geological sciences [C]. Berlin: Springer-Verlag, 1992.71-88.
  • 5West B J, Deering B. The lure of modern science [M]. Singapore: World Scientific, 1995. 1-421.
  • 6Manneville P. From temporal to spatio-temporal chaos [A]. In: Livi R, Nadal J P, Packard N, eds. Complex dynamics [C]. New York: Nova Science Publishers Inc, 1993. 19-30.
  • 7Bak P, Paczuski M. The dynamics of fractals [A]. In: Evertsz C J G, Peitgen H-O, Voss R F, eds. Fractal geometry and analysis [C]. Singapore: World Scientific, 1996. 11-25.
  • 8陈若航,孔令江,何云,李华兵,刘慕仁.二维空腔黏性流的格子Boltzmann方法模拟[J].物理学报,2000,49(4):631-635. 被引量:9

共引文献19

同被引文献76

引证文献5

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部