期刊文献+

界面摩擦过程非连续能量耗散机理研究 被引量:8

Study on discontinucous energy dissipation mechanism of friction
原文传递
导出
摘要 结合无磨损界面摩擦微观能量耗散机理的复合振子模型,运用量子理论建立了微观能量耗散的量子力学模型.分析表明:在滑动过程中,当界面原子从一种平衡态跳跃至另一种平衡态时,摩擦功以离散形式耗散为界面原子热振子,且界面吸收能量的能力是离散的;高能态界面较低能态界面吸收能量的能力强,表现为易于吸收界面势能.界面原子吸收和释放能量的离散性在宏观上表现为摩擦功耗散的非连续性,为从微观角度解释无磨损界面摩擦状态周期性变化提供了理论基础. Based on the composite oscillator model of atomlc-scale wearless friction, a quantum mechanics model is proposed for analyzing the energy dissipation. The analysis indicates that the energy dissipation is discontinuous in a sliding process. The energy absorbing ability of an atom on a contact surface is discrete when the atom jumps from one equilibrium state to another. At the same time, the ability of a contact surface atom to absorhe the interfacial potential energy is stronger in a high energy state than in a low energy state. This will provide the theoretical basis for analyzing the periodical change in friction.
作者 龚中良 黄平
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2008年第4期2358-2362,共5页 Acta Physica Sinica
基金 国家自然科学基金(批准号:50675068) 中国博士后科学基金(批准号:20070410819)资助的课题~~
关键词 摩擦 非连续能量耗散 复合振子模型 friction, non-contlnual energy dissipation, composite oscillator model
  • 相关文献

参考文献16

  • 1Ringlein J, Robbins M O 2004 Am. J. Phys. 72 884
  • 2Krim J 2002 Surf. Sci. 500 741
  • 3张向军,孟永钢,温诗铸.原子力显微镜探针耦合变形下的微观扫描力研究[J].物理学报,2004,53(3):728-733. 被引量:15
  • 4Gnecco E, Bennewitz R, Socoliuc A, Meyer E 2003 Wear 254 859
  • 5Sasaki N, Kobayashi K, Tsukada M 1996 Phys. Rev. B 54 2138
  • 6Buldum A, Ciraci S 1997 Phys. Rev. B 55 2606
  • 7Andrea V, Alan B R, Virginio B 2004 Nanotechnology 15 790
  • 8Kawaguchi T, Matsukawa H 1997 Phys. Rev. B 56 13932
  • 9Van Erp T S, Fasolino A, Radulescu O, Janssen T 1999 Phys. Rev. B 60 6522
  • 10Weiss M, Elmer F J 1996 Phys. Rev. B 53 7539

二级参考文献35

  • 1[2]Binnig G,Quate C F and Gerber Ch 1986 Phys.Rev.Lett.56 930
  • 2[3]Gu C Z,Braun K F and Rieder K H 2002 Chin.Phys.11 1042
  • 3[4]Lou S T,Gao J X,Xiao X D,Li X J,Li G L,Zhang Y,Li M Q,Sun J L and Hou J 2001 Chin.Phys.10 108
  • 4[5]Chu J R,Huang W H,Maeda R,Itoh T and Suga T 2001 Chin.Phys.10 167
  • 5[6]Sader J E and White L 1993 J.Appl.Phys.74 1
  • 6[7]Sader J E,Larson L and Mulvaney P 1995 Rev.Sci.Instrum.66 3789
  • 7[8]Neumeister J M 1994 Rev.Sci.Instrum.65 2527
  • 8[9]Cleveland J P,Manne S and Bocek D 1993 Rev.Sci.Instrum.64 403
  • 9[10]Hutter J L and Bechhoefer J 1993 Rev.Sci.Instrum.64 1868
  • 10[11]Walters D A,Cleveland J P and Thomson N H 1996 Rev.Sci.Instrum.67 3583

共引文献34

同被引文献95

引证文献8

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部