期刊文献+

最先失败原则的约束传播算法 被引量:7

Fail First Principle for Constraint Propagation
下载PDF
导出
摘要 约束满足问题是人工智能研究领域的重要问题.而弧相容算法是求解约束满足问题的重要工具.在弧相容算法中应用启发式规则已经证明是一种很有效的方式.本文提出一个基于最先失败原则的约束传播算法,该算法在搜索过程中更早地发现含有空域的变量并提前进行回溯,从而提高问题求解效率.同时,在"明月1.0"架构下实现了该算法,实验结果表明使用最先失败原则的弧相容算法要比原来的算法效率上提高了约40%. constraint satisfaction problems play a very important role in the area of artificial intelligence, while arc consistency is the key technique in solving such problems, and using heuristic rules can improve the algorithm's efficiency. In this paper a new constraint propagation algorithm based on fail first principle is proposed, which improves the practical time efficiency through backtracking in advance due to the earlier found of variables which contain null values, when implemented under the platform of "Mingyue1. 0", the experiments showed the practical time efficiency is increased by 40 percent through using fail first principles compared with the original one.
出处 《小型微型计算机系统》 CSCD 北大核心 2008年第4期678-681,共4页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(60473003)资助 吉林省自然科学基金项目(20040526)资助 教育部博士点基金(20050183065)资助
关键词 最先失败原则 弧相容 约束满足问题 约束传播 fail first principle arc consistency constraint satisfaction problems constraint propagation
  • 相关文献

参考文献13

  • 1Bessiere C, Regin J C. MAC and combined heuristics: two reasons to for sake FC (and CBJ?) on hard problems[C]. In: Proceedings of CP'96, 1996, 61-75.
  • 2Mackworth A K. Consistency in networks of relations[S]. Artificial Intelligence, 1977, 8:99-118.
  • 3Bessiere C. Arc consistency and arc consistency again[S]. Artficial Intelligence, 1994, 65 : 179-190.
  • 4Bessière C, Freuder E C, Régin J-C. Using inference to reduce arc consistency computation[C]. In: Mellish C S, editor, Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence (UCAI'95), Montréal, Québec, Canada, Morgan Kaufmann Publishers, 1995, 1, 592-598.
  • 5Bessière C, Régin J-C. Refining the basic constraint propagation algorithm[C]. In: Proceedings of the Seventeenth International Joint Conference on Artificial Intelligence (IJCAI'2001), 2001, 309-315.
  • 6M R C van Dongen, Mehta D. Queue representation for arc consistency algorithms[C]. In: McGinty L, Crean B B, editors, Proceedings of the Fifteenth Irish Conference on Artificial Intelligence and Cognitive Science, 2004, 334-343.
  • 7Wallace R J, Freuder E C. Ordering heuristics for arc consistency algorithms [C]. In: AI/GI/VI'92, Vancouver, British Columbia, Canada, 1992, 163-169.
  • 8Lecoutre C, Boussemart F, Hemery F. Exploiting multidirectionality in coarse-grained arc consistency algorithms[C]. In.. Proceedings of the 9th International Conference on Principles and Practice of Constraint Programming, CP'2003, 480-494.
  • 9Mehta D, M R C van Dongen. Two new lightweight arc consistency algorithms[C]. In: M R C van Dongen, editor, Proceedings of the First International Workshop on Constraint Propagation and Implementation (CPAI'2004), 2004, 109-123.
  • 10Tsang Edward. Foundations of constraint satisfaction[M]. Academic Press Linited, 1993.

二级参考文献15

  • 1[1]Bacchus F, van B P. On the conversion between non-binary and binary constraint satisfaction problems. In: Proceedings of AAAI′98,Madison WI,1998. 311~318
  • 2[2]Dent M J, Mercer R E. Minimal forward checking. In: Proceedings of the 6th IEEE International Conference on Tools with Artificial Intelligence, New Orleans, LA,1994. 432~438
  • 3[3]Haralick R M, Elliot G L. Increasing tree seach efficiency for constraint satisfaction problems. Artificial Intelligence, 1980,14(3) :263~313
  • 4[4]Bessiere C, Meseguer P, Freuder E C, Larrosa J. On forward checking for non-binary constraint satisfaction. Artificial Intelligence, 2002, 141(1/2) :205~224
  • 5[5]Mohr R, Masini G. Good old discrete relaxation. In:Proceed-ings of ECAI′88, Munchen, FRG, 1988. 651~656
  • 6[6]Dechter R, Pearl J. Tree clustering for constraint networks.Artificial Intelligence, 1989, 38(3) :353~366
  • 7[7]Dechter R. On the expressiveness of networks with hidden variables. In: Proceedings of the 8th National Conference on Artificial Intelligence, Boston, Mass,1990. 556~562
  • 8[8]Rossi F, Petrie C, Dhar V. On the equivalence of constraint satisfaction problems. In: Proceedings of ECAI′ 90, Stockholm, Sweden, 1990. 550~556
  • 9[9]Larrosa J,Meseguer P. Adding constraint projections in n-ary csp. In: Proceedings of the ECAI′98 workshop on non-binary constraints, Brighton, UK, 1998. 41~48
  • 10[10]van H P. Constraint satisfaction in logic programming. Cambridge, MA:MIT Press, 1989

共引文献15

同被引文献80

  • 1李铁克,周健,孙林.连铸连轧和冷装热轧并存环境下的炼钢-连铸生产调度模型与算法[J].系统工程理论与实践,2006,26(6):117-123. 被引量:18
  • 2许剑,吕志民,徐金梧.基于并行策略的冶铸轧一体化组批模型及算法[J].控制与决策,2006,21(9):979-983. 被引量:10
  • 3郭冬芬,李铁克.基于约束满足的车间调度算法综述[J].计算机集成制造系统,2007,13(1):117-125. 被引量:34
  • 4孙玲,李铁克.炼钢-连铸-热轧批量计划的约束满足算法[J].计算机集成制造系统,2007,13(5):940-944. 被引量:15
  • 5Gent I P, Macintyre E, Prosser P, Smith B M, Walsh T. Random constraint satisfaction flaws and structure. Journal of Constraints, 2001, 6(4): 345-372
  • 6Xu Ke, Li Wei. Exact phase transitions in random constraint satisfaction problems. Journal of Artificial Intelligence Research. 12(2000): 93-103
  • 7Xu K, Boussemart F, Hemery F, Lecoutre C. A simple model to generate hard satisfiable instances. In: Proceedings of the 19th International Joint Conference on Artificial Intelligence. Edinburgh, UK: Professional Book Center, 2005. 337-342
  • 8Bartak R. Theory and practice of constraint propagation. In: Proceedings of the 3rd Workshop on Constraint Programruing in Decision and Control. Gliwice, Poland: Springer, 2001. 7-14
  • 9Bessiere C, Regin J C, Yap R H C, Zhang Y L. An optimal coarse-grained arc consistency algorithm. Artificial Intellgence, 2005, 165(2): 165-185
  • 10Lecoutre C, Cardon S, Julien V. Conservative dual consistency. In: Proceedings of the 22nd Conference on Artificial Intelligence. California, USA: AAAI Press, 2007. 237-242

引证文献7

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部