期刊文献+

基于模糊推理和关联规则分析的河道洪水预报模型 被引量:1

River flow forecasting model based on fuzzy inference and associated rules analysis
下载PDF
导出
摘要 河道洪水预报过程是一项复杂的非线性计算过程.为及时准确地预报下游河道特征值,针对传统模糊推理中存在的规则数过多和模型参数难以确定的问题,提出了一种新的模糊推理河道洪水预报模型.该模型以T-S模糊推理法为基础,通过对历史数据的关联规则分析和建立非线性优化模型确定模糊规则数目和模型参数,最后预报未来出现的流量数值.实例分析表明,基于模糊推理和关联规则分析的河道洪水预报模型易于理解,特别对防洪比较重要的高流量的预报结果较好. The processing of river flow forecasting includes complicated non-linear calculation, how to gain the characteristics of downriver watercourse duly and exactly based on the river flow forecasting model is very important in practice. Aiming at the existing problems on the number of fuzzy rules and parameters in traditional fuzzy inference, a new model based on T-S fuzzy inference engine is proposed to forecast river flow, which confirms rule numbers and model parameters by using associated rules analysis on historical data and non-liner programming method and therefore predicts the future flux value. Through case study, it is testified that the established model based on fuzzy inference and associated rules analysis is easy to understand and implement, especially to excellent precision for flood forecasting.
出处 《大连理工大学学报》 EI CAS CSCD 北大核心 2008年第2期263-269,共7页 Journal of Dalian University of Technology
基金 国家自然科学基金资助项目(50479056) 大连市科技计划资助项目(2007E21SF165)
关键词 洪水预报 模糊推理 关联规则分析 flow forecasting fuzzy inference associated rules analysis
  • 相关文献

参考文献8

  • 1水利部松辽水利委员会.1998年松花江大洪水[M].长春:吉林人民出版社,2002.
  • 2朱星明,卢长娜,王如云,白婧怡.基于人工神经网络的洪水水位预报模型[J].水利学报,2005,36(7):806-811. 被引量:48
  • 3KIM G, BARROS A P. Quantitative flood forecasting using multisensor data and neural networks[J]. Journal of Hydrology, 2001, 246:45-62
  • 4ARONICA G, TUCCIARELLI T, NASELLO C. 2D multilevel model for flood wave propagation in flood-affected areas[J]. Journal of Water Resources Planning and Management, 1998,124 ( 4 ) : 210-217
  • 5MAMDANI E H, ASSILIAN S. An experiment in linguistic synthesis with a fuzzy logical controller[J]. International Journal of Man-Machine Studies, 1975, 7(1):1-13
  • 6TAKAGI T, SUGENO M. Fuzzy identification of systems and its application to modeling and control[J]. IEEE Transactions on Systems, Man and Cybernetics, 1985, 15(1) : 116-132
  • 7RUSSELL S O, CAMPBELL P F. Reservoir operating rules with fuzzy programming[J]. Journal of Water Resources Planning and Management, 1996, 122(3) : 165-170
  • 8AGRAWAL R, IMIELINSKI T, SWAMI A. Mining association rules between sets of items in large databases[C] // Proceedings of 1993 ACM SIGMOD. International Conference of Management of Data. Washington D C : ACM, 1993 : 207-216

二级参考文献11

  • 1尚金成,刘鑫卿,张勇传,刘育琪,杜江.基于多层神经元网络的随机自适应径流预报模型[J].水电能源科学,1995,13(1):52-56. 被引量:15
  • 2张恭肃 朱星明.洪水预报调度自动化系统[J].水文,1988,(5):1-6.
  • 3Yu Paoshan, Cehn Chiajung, Chen Shiannjong, Lin Shuchen. Application of grey model to ward runoff forecasting [ J ].Journal of The American Water Resources Association,2001,37( 1 ):151 - 166.
  • 4长办水文局汇编.水文预报论文选集[M].北京:水利电力出版社,1985..
  • 5Raman H, Sunikuma N. Multivariate modeling of water resources time series using ar6ficial neural networks [ J ].Hydrological Sciences Journal, 1995,40(2):145- 163.
  • 6Minns A W, Hall M J, Artificial neural networks as rainfall-runoff models[J]. Hydrological Science Journal, 1996,41 (3):399 - 417.
  • 7Bonaffe A, Galeati G, Sforna M. Neural networks for daily mean flow forecasting. In: Blain W R, Katsifarakis K Led. Water Resources and Distribution[ J ]. hydraulic Eng Software V, UK : Southamptom, 1994,1 : 131 - 138.
  • 8Maier H R, Dandy G C. The use of artificial neurla networks for the prediction of water quality parameters[ J ]. Water Resources, 1996,32(4) : 1013 - 1022.
  • 9袁美英,潘华盛,张桂华,董淑华.利用人工神经网络方法预报松花江汛期水位[J].气象科技,2002,30(1):43-46. 被引量:7
  • 10李鸿雁,刘寒冰,苑希民,刘树坤.人工神经网络峰值识别理论及其在洪水预报中的应用[J].水利学报,2002,33(6):15-20. 被引量:40

共引文献47

同被引文献8

  • 1张弛.数据挖掘技术在水文预报与水库调度中的应用研究[D].大连:大连理工大学,2006-03.
  • 2SHAMSELDIN A Y, O' CONNOR K M, LIANG G C. Methods for combining the outputs of different rainfallrunoff models [ J]. Journal of Hydrology, 1997, 197 : 203 - 229.
  • 3XIONG L H, SHAMSELDIN A Y, O'CONNOR K M. A non - linear combination of the forecasts of rainfall - runoff models by the first - order Takagi - Sugeno fuzzy system [J]. Journal of Hydrology, 2001, 245:196-217.
  • 4SUDHEER KP, NAYAK P C, RAMASASTRI K S. Improving peak flow estimates in artificial neural network river flow models [ J ], Hydrological Processes, 2003, 17 : 677 - 686.
  • 5JAIN A, SUDHEER K P, SRINIVASULU S. Identification of physical processes inherent in artificial neural network railffall runoff models [ J ]. Hydrological Processes, 2004, 18:571 -581.
  • 6ZHANG B, GOVINDARAJU R S. Prediction of watershed runoff using Bayesian concepts and modular neural networks [J]. Water Resources Research, 2000, 36 (3) : 753 - 762.
  • 7CHANG F J, CHEN Y C. Estuary water - stage forecasting by using radial basis function neural network [J].Journal of Hydrology, 2003, 270: 128-166.
  • 8SEE L, OPENSHAW S. Applying soft computing approaches to river level forecasting [ J ]. Hydrological Sciences Journal, 1999, 44(5) : 763 -778.

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部