期刊文献+

基于PSO和Level Set的快速曲线演化算法 被引量:2

A New Fast Algorithm of Curve Evolution Based on PSO and Level Set
下载PDF
导出
摘要 提出了一种基于微粒群算法(PSO)、水平集(Level Set)的快速曲线演化算法.该算法将图像分割分为两阶段,利用PSO方法对Snake模型中的控制点进行寻优,使控制点能快速地收敛到图像的边缘附近;利用插值算法,得到目标较粗糙的大致轮廓,以此目标轮廓作为初始的零水平集曲线;使用Level Set窄带方法得到准确的轮廓.从而克服了参数主动轮廓线模型对初始曲线敏感、噪声敏感和不能收敛到凹陷的边缘问题和几何主动轮廓线模型水平集方法计算量大等问题.实例研究结果表明了该算法的正确性、有效性. This paper presents a new method for curve evolution based on PSO and Level Set. PSO is first proposed to find the optima of snake points for rapidly converging near image edge. Then the interpolation algorithm is applied to gaining the object's rough contour that is used as the initial zero level set. The accurate contour can be obtained by the approach of narrow band level set. The new method overcomes the disadvantages of the sensitivity of active contour models to its initial position, the poor convergence to boundary concavities which existed in the traditional Snake algorithm, sensitivity to noise and complex computation. Experimental results show that the new algorithm is efficient and the evolution result is precise.
作者 李国友 董敏
出处 《测试技术学报》 2008年第2期150-154,共5页 Journal of Test and Measurement Technology
基金 国家自然科学基金资助项目(60274023)
关键词 微粒群算法 Level SET 图像分割 噪声 窄带 PSO level set image segmentation noise narrow band
  • 相关文献

参考文献8

  • 1周则明,陈强,王平安,夏德深.结合模糊C均值聚类和曲线演化的心脏MRI图像分割[J].系统仿真学报,2005,17(1):129-133. 被引量:12
  • 2Chopp D L. Computing minimal surfaces via level set curvature flow[J]. Journal of Computing Physics,. 1993, 106: 77-91.
  • 3杨猛,汪国平,董士海.基于Level Set方法的曲线演化[J].软件学报,2002,13(9):1858-1865. 被引量:15
  • 4Kass M, Witkin A, Terzopoulos D. Snakes: active contour models[J]. International Journal of Computer Vision, 1987, 1(4): 321-331.
  • 5Kennedy J, Eberhart R C. Particle Swarm Optimization[C]. Proc. IEEE Int'l. Conf. on Neural Networks Part Ⅳ. Piscataway: IEEE Service Centel, 1995:1942-1948.
  • 6Adalsteinsson D, Sethian J A. A fast level set method for propagating interfaces [J]. Journal of Computation Physics, 1995, 118(2): 269-277.
  • 7Adalsteinsson D, Sethian J A. The fast construction of extension velocities in level set methods[J]. Journal of Computational physics, 1999,148(1): 2-22.
  • 8Sethian J:A. Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, And Materials Science[M]. London: Cambridge University Press, 1999.

二级参考文献23

  • 1Osher, S.,Sethian,J.A.Fronts propagating with curvature dependent speed:algorithms based on the Hanilton-Jacobi formulation[J].Journal of Computational Physics, 1988,79:12-49.
  • 2Adalsteinsson,D.,Sethian,J.A. A fast level set method for propagating interfaces[J].Journal of Computational Physics,1995,118 (2): 269-277.
  • 3Xu C,Prince J L. Snakes,shapes and gradient vector flow[J]. IEEE Trans on Imaging Processing. 1998, 7(3):359-369.
  • 4Adalsteinsson,D.,Sethian,J.A.The fast construction of extension velocities in Level Set methods [J]. Journal of Computational Physics,1999,148(1): 2-22.
  • 5Peng,Dan-ping,Merriman,Barry et al.A PDE-based fast local level ser method[J]. Journal of Computational Physics, 1999,155(2): 410-438.
  • 6Malladi ,R., Sethian,J.A.Shape modeling with front propagating:a level set approach[J]. IEEE Trasacfion on Pattern Analysis and Machine Intelligence, 1995, 17(2): 158-175.
  • 7V Caselles, R Kimmel, G Sapiro. Geodesic active contours[J]. LJCV,1997, 22: 61-79.
  • 8Nikos Paragios, Rachid Detiche. Coupled geodesic active regions for image segmentation:A level set approach[A]. In Proceeding of 6^th Eur. Conf. on Computer Vision[C]. Dublin, 2000: 224-240.
  • 9Leventn,M.E.,Grimson,W.E.L.,Faugeras,O.Statistical shape influence in geodesic active contours[A]. In Proc. Conf. Computer Vision and Pattern Recognition[C] Hilton Head Island,June 2000,1.316-323.
  • 10Suri,J.S,Leaking prevention in fast level sets using fuzzy models:An application in MR brain[A]. In Proc. Int. Conf. Inform. Technol.Biomedicine[C]. Nov.2000. 220-226.

共引文献25

同被引文献33

  • 1于慧敏,徐艺,刘继忠,高晓颖.基于水平集的多运动目标时空分割与跟踪[J].中国图象图形学报,2007,12(7):1218-1223. 被引量:8
  • 2BAI Ke-jia, LIU Wei-ming. Improved object tracking with particle filter and Mean-shift [ C ]//Proc of IEEE International Conference on Automation and Logistics. 2007:18-21.
  • 3ZHANG Li-ke,ZHAO Hong-guang. Real-time Mean-shift tracking using the Gabor wavelet [ C ]//Proc of IEEE International Conference on Mechatronics and Automation. 2007:5-8.
  • 4STOLKIN R, FLORESCU I, BARON M,et al. Efficient visual servoing with the ABCshift tracking algorithm[ C ]//Proc of IEEE International Conference on Robotics and Automation. 2008:3219-3224.
  • 5PORIKLI F. Integral histogram : a fast way to extract histograms in Cartesian spaces [ C ]//Proc of IEEE Computer Society Conference on CVPR' 05. Washington DC : IEEE Computer Society,2005 : 829- 836.
  • 6COLLINS R T,LIU Yan-xi,LEORDEANU M. Online selection of discriminative tracking features[J]. IEEE Trans on Pattern Analysis and Machine Intelligence,2005,27(10) :1578,1591.
  • 7LEICHTER I, LINDENBAUM M M, RIVLIN E. Tracking by affine kernel transformations using color and boundary cues [ J ]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2009,31 (1) :164-171.
  • 8HUA J S,JUAN Chung-wei. A spatial-color Mean-shift object tracking algorithm with scale and direction estimation [ J ]. Pattern Recognition Letters ,2008,29(16) :2165-2173.
  • 9MAGGIO E, CAVALLARO A. Accurate appearance-based Bayesian tracking for maneuvering targets [ J]. Computer Vision and Image Understanding,2009,113 (4) :544-555.
  • 10GUNNARSSON F, BERGMAN N. Particle filter for positioning, navigation,and tracking[ J]. IEEE Trans on Signal Processing,2002, 50(2) :425-437.

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部