摘要
讨论一类非线性双曲型时滞偏微分方程的振动性,利用空间平均法和泛函微分方程的某些结果,获得了该类方程组在第一类边值条件下所有解振动的若干充分条件.结论充分表明振动是由时滞量引起的.
The oscillation for a class of systems of nonlinear hyperbolic delay partial differential equations are studied in this paper. Some sufficient conditions are obtained for oscillation of all solutions of the systems under first boundary value conditions via spatial average and some results of the functional differential equations. The results fully indicate that the oscillation is caused by delay.
出处
《河南大学学报(自然科学版)》
CAS
北大核心
2008年第2期127-129,共3页
Journal of Henan University:Natural Science
基金
湖南省自然科学基金资助项目(05JJ40008)
湖南省教育厅科学研究基金资助项目(07C164)
关键词
非线性
时滞
双曲型偏微分方程组
振动性
nonlinear
delay
systems of hyperbolic partial differential equation
oscillation