期刊文献+

微波辅助polyol法制备纳米金属镍及磁性研究 被引量:1

Study on nano-metalic nickel synthesized by microwave-assisted polyol method and its magnetic properties
下载PDF
导出
摘要 采用微波辅助polyol法成功地制备了直径范围在5~10nm、100~180nm的单分散Ni球,对其磁性进行了测量分析。用XRD和EDAX,接着用TEM和MFM分别对制备的样品进行测试,并用VSM和SQUID进一步讨论了铁磁/反铁磁的界面耦合效应。XRD显示该样品是面心立方结构,EDAX数据表明制备过程中镍球被轻微氧化,MFM和TEM观察结果显示样品金属镍是比较理想的球型,VSM测试结果表明Ni纳米球具有典型的铁磁性。 Monodispersed nickel spheres with diameters ranging from 5 to 10 nm and from 100 to 180nm are fabricated by microwave-assisted (MW) polyol method. The X-ray diffraction (XRD) and the EDAX tests, followed by the TEM and the MFM tests, are implemented for the fabricated samples. The magnetic coupling effect of ferromagnetic-antiferromagnetic interfaces by vibrating sample magnetometer (VSM) and SQUID is discussed. An f. c. c structure of Ni spheres is observed by XRD. The data of EDAX indicate that Ni spheres are oxidized slightly in synthesis process. SEM and TEM examination shows that the shapes of the samples are ideal spheres. Besides, typical ferromagnetic property is investigated in the VSM studies of the Ni spheres.
出处 《功能材料》 EI CAS CSCD 北大核心 2008年第4期553-556,共4页 Journal of Functional Materials
基金 国家自然科学基金资助项目(50672001)
关键词 单分散Ni球 微波辅助polyol还原法 磁性 monodispersed Ni sphere microwave-assisted polyol method magnetism
  • 相关文献

参考文献20

  • 1Sobal N S,Ebels U,et al.[J].J Phys Chem B,2003,107:7351-7354.
  • 2Lyon J L,Fleming D A,et al.[J].Nano Lett,2004,4(4):719-723.
  • 3Eisenmenger J,Schuller I V.[J].Nat Mater,2003,2:437-438.
  • 4Tu Y,Huang Z P,et al.[J].Appl Phys Lett,2002,80:4018-4020.
  • 5Zhou H,Kumar D,et al.[J].J Appl Phys,2003,94:4841-4846.
  • 6Meiklejohn H,Bean C P.[J].Phys Rew,1956,102:1413-1414.
  • 7Skumryev V,Stoyanov S,et al.[J].Nature,2003,423:850.
  • 8Eisenmenger J,Schuller I V.[J].Nat Mater,2003,2:437.
  • 9Albrecht M,Rettner C T,et al.[J].Appl Phys Lett,2002,81:2875.
  • 10Kumar R V,Koltypin Y,et al.[J].J Appl Polym Sci,2002,86:160.

同被引文献14

  • 1Ren Z F, Huang Z P, Xu J W, et al. [J]. Science, 1998, 282: 1105-1107.
  • 2Dai H, Wong E W, Lieber C M. [J]. Science, 1996, 272 (5261): 523-526.
  • 3Wu H Q, Xu D M, Wang Q Y, et al. [J]. J Alloys Comp, 2008, 463: 78-83.
  • 4Wen M, Wang Y F, Zhang F, et al. [J]. J Phys Chem C, 2009, 113: 5960-5966.
  • 5Zhu L P, Zhang W D, Xiao H M, et al.[J]. J Phys Chem C, 2008, 112(27): 10073-10078.
  • 6Dong Z P, Ma K, He J G.[J]. Mater Lett, 2008, 62: 4059-4061.
  • 7Zhang X J, Jiang W, Song D, et al. [J]. Mater Lett, 2008, 62: 2343-2346.
  • 8Zhu L P, Xiao H M, Fu S Y. [J]. Eur J Inorg Chem, 2007, 11:3947-3951.
  • 9Mercier D, Levy J C S, Viau G, et al. [J]. Phys Rev B, 2000, 62: 532-544.
  • 10Xu M H, Zhong W, Qi X S, et al. [J]. J Alloys Comp, 2010, 495: 200-204.

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部