摘要
在主成分分析法和改进BP网络相结合的基础上,进行降雨预报模型的研究。先由主成分分析法降低原始气象数据的维数,然后利用改进BP网络有效地学习气象样本数据中蕴含的内在规律。研究结果显示,该降雨预报模型训练效率高,预报效果好。
On the base of combining Principal Component Analysis with improved BP network,this paper made a research on the rain forecasting model.First the dimensions of the raw meteorological data were decreased by PCA.Then it was by improved BP network to learn the potential rules which existd in meteorological samples effectively.The result of the research shows that,the rain forecasting model has high training efficiency and good forecasting effect.
出处
《计算机工程与应用》
CSCD
北大核心
2008年第12期234-237,共4页
Computer Engineering and Applications
基金
山东省自然科学基金(the Natural Science Foundation of Shandong Province of China under Grant No.Q2006G03)
关键词
主成分分析
BP网络
降雨预报
Principal Component Analysis(PCA)
Back-Propagation network
rain forecasting