期刊文献+

3-维肿瘤模型球对称解的稳定性 被引量:1

The stability of the spherical symmetry solutions to a 3-dimensional tumor model
下载PDF
导出
摘要 肿瘤向周围组织入侵的能力与肿瘤的稳定性紧密相连.运用球对称分析与微分方程稳定性定理,研究了一个考虑细胞黏附力的未血管化3-维肿瘤模型球对称解的稳定性,得到了符合实际情况的稳定和不稳定的条件. The ability of tumor to invading the surrounding tissues is closely connected with stability of tumor. By spherical symmetry analysis and theory of stability of differential equations, the stability of the spherical symmetry solutions to a 3-dimensional tumor model is studied. Stable and unstable conditions which match actual situation are obtained.
作者 周钢
出处 《纺织高校基础科学学报》 CAS 2008年第1期29-33,共5页 Basic Sciences Journal of Textile Universities
基金 上海高校选拔培养优秀青年教师科研专项基金资助项目(29-003-2)
关键词 肿瘤 细胞黏附力 自由边界问题 球对称稳定 tumor adhesive forces free boundary problems spherical symmetry stability
  • 相关文献

参考文献13

  • 1FOLKMAN J; Tumour angiogenesis[J]. Adv Cancer Res, 1950,43: 175-203.
  • 2GREENSPAN H P. Models for the growth of a solid tumor by diffusion[J]. Stud Appl Math,1972,51:317-340.
  • 3DEAKIN A S. Model for the growth of a solid in Vitro tumour[J]. Growth, 1975,39:159-165.
  • 4MAGGELAKIS S A,ADAM J A. Mathematical model of prevascular growth of a spheroid carcinoma[J]. Math Comput Mod, 1990,13:23-38.
  • 5MAGGELAKIS S A. Effects of non-uniform inhibitor production on the growth of cancer cell cultures[J]. Appl Math Lett, 1992,5 (5) : 11-14.
  • 6BYRNE H M,CHAPLAIN M A J. Growth of nonnecrotic tumours in the presence and absence of inhibitors[J]. Math Biosci, 1995,130 : 151-181.
  • 7BYRNE H M, CHAPLAIN M A J. Growth of necrotic tumors in the inhibltors[J]. Math Biosci, 1996,135: 187-216.
  • 8WARD J P,KING J R. Mathematical modelling of avascular tumour growth[J]. IMA J Math Appl Med Biol, 1997, 14 : 39-69.
  • 9WARD J P,KING J R. Mathematical modeling of avascular tumour growth Ⅱ: modeling growth saturation[J]. IMA J Math Appl Med Biol,1999, 16: 171-211.
  • 10BYRNE H M, CHAPLAIN M A J. Modelling the role of cell-cell adhesion in the growth and development of carcinomas[J]. Mathl Comput Modelling, 1996,24(12) : 1-17.

同被引文献7

  • 1WALTER WOLFGANG. Ordinary differential equations [ M ]. New York: Spfinger-Verlag, 1998: 311-312.
  • 2FRIEBOES H F, ZHENG XIAOMING, SUN CHUNG-HO,et al. An integrated computational/experimental model of tumor invasion[J]. Cancer Res,2006,66(3):1 597-1 604.
  • 3CHAPLAIN M A J, LOLAS G. Mathematical modeling of cancer invasion of tissue, dynamicheterogeneity [ J ]. Networks Heter Media,2006,1 (3) :399-439.
  • 4RAMIS-CONDE I, CHAPLAIN M A J, ANDERSON A R A, Mathematical modelling of cancer cell invasion of tissue [ J ]. Math Comp Mod,2008,47(5) :533-545.
  • 5TAO Y S, YOSHIDA N, GUO Q. Nonlinear analysis of a model of vascular tumorgrowth and treatment[J]. Nonlinearity, 2004,17(3) : 867-895.
  • 6FRIEDMAN A, REITICH F. Nonlinear stability of a Quasi-static stefan problem with surface tension: a continuation approach [J]. Ann Scu Norm Super Pisa,2001,30(4) :341-403.
  • 7FONTELOS M A, FRIEDMAN A. Symmetry-breaking bifurcations of free boundary problems in three dimensions [ J ]. Asymptotic Analysis, 2003,35 ( 3 ) : 187-206.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部