期刊文献+

广义特征值的稳定性及刻画

The characterization and stability of extended eigenvalue
下载PDF
导出
摘要 设A是复Hilbert空间H上的有界线性算子.λ∈C,如果存在H上的非零有界线性算子B使得AB=λBA,那么就称λ是A的一个广义特征值.记A的全体广义特征值所构成的集合为Σ(A).利用算子分块的技巧,讨论了上三角算子矩阵的广义特征值的稳定性问题.此外,对H上的正可逆算子A,证得Σ(An/m)=(Σ(A))n/m,其中n,m∈Z,并且m≠0. Let A be a bounded linear operator on a complex Hilbert space X.λ∈C is called an extended eigenvalue of A if there exists a nonzero operator B on X such that AB=λBA. The set of all extended eigenvalues of A is denoted by ∑(A). By using the technique of operator block, the extended eigenvalue of upper triangular operator matrices was studied. And more, it is showed that if A≥0 and A is invertible, then ∑(An/m)= (∑(A))n/m, where n,m∈Z, and m≠0.
出处 《纺织高校基础科学学报》 CAS 2008年第1期52-54,60,共4页 Basic Sciences Journal of Textile Universities
基金 国家自然科学基金资助项目(10571113)
关键词 广义特征值 算子矩阵 正算子 extended eigenvalue operator matrix positive operator
  • 相关文献

参考文献9

  • 1LAMBERT A, PETROVIC S. Beyond hypervariance for compact operators[J]. Journal of Functional Analysis,2005, 219:93-108.
  • 2SHKARIN S. Compact operators without extended eigenvalues[J]. Journal of Mathematical Analysis and Applications, 2007,332 : 455-462.
  • 3BISWAS A, PETROVIC S. On extended eigenvalues of operators[J]. Integral Equations and Operator Theorey, 2005,55: 233-248.
  • 4KARAEV M T. On extended eigenvalues and extended eigenvectors of some operator classes[J]. Proceedings of the American Mathematical Society, 2006,134: 2 383-2 392.
  • 5LAMBERT A. Hyperinvariant subspaces and extended eigenvalues[J]. New York J Math,2004,10:83-88.
  • 6PETROVIC S. On the extended eigenvalues of some Volterra operators[J]. Integral Equations and Operator Theorey, 2007,57:593-598.
  • 7王凯明,胡新利,贾双盈.l^2-范数下的非线性测度[J].纺织高校基础科学学报,2004,17(3):198-200. 被引量:5
  • 8任芳国.有界线性算子的n-次数值域[J].纺织高校基础科学学报,2002,15(4):287-290. 被引量:5
  • 9ROSENBLUM M. On normal operator equation BX-XA= Q[J]. Duck Math J, 1956,23 : 263-269.

二级参考文献15

  • 1QIAO Hong,PENG Ji-gen,XU Zong-ben.Nonlinear measures:A new approach to exponential stability analysis for hopfield-type neural networks[J].IEEE Transactions on Neural Networks,2001,12(2):360-369.
  • 2HORN R A,JOHNSON C R.Topics in Matrix Analysis[M].Cambridge:Cambridge University Press,1991.
  • 3LASALLE J P.The Stability of Dynamical Systems[M].U K:J W Arrowsmith Ltd,1976.
  • 4TOEPLITZ O.Das algebraische Analogon Zu einem satze Von FeJer[J].Math Zeit, 1918,(2):187-197.
  • 5HAUSDORFF F.Der Wertvorrat einer Bilinearform[J].Math Zeit,1919,3:314-316.
  • 6DONOGHUE W F.On the numerical range of a bounded operator[J].Michigan Math J,1957,4:261-263.
  • 7WILLIAMS J P.CRIMMINS T.On the numerical radius of a linear operator[J].Amer Math Mon,1974,74:832-833.
  • 8LI C K.C-numerical range and C-numerical radii[J].Lin Multilin Alg,1994,37:51-82.
  • 9POON Y.The generalized k-numerical range[J].Linear and Multilinear Algebra,1980,9:181-186.
  • 10HAIMOS P R.A Hilbert space problem book[M].New York:Springer Press,1973.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部