摘要
设A是复Hilbert空间H上的有界线性算子.λ∈C,如果存在H上的非零有界线性算子B使得AB=λBA,那么就称λ是A的一个广义特征值.记A的全体广义特征值所构成的集合为Σ(A).利用算子分块的技巧,讨论了上三角算子矩阵的广义特征值的稳定性问题.此外,对H上的正可逆算子A,证得Σ(An/m)=(Σ(A))n/m,其中n,m∈Z,并且m≠0.
Let A be a bounded linear operator on a complex Hilbert space X.λ∈C is called an extended eigenvalue of A if there exists a nonzero operator B on X such that AB=λBA. The set of all extended eigenvalues of A is denoted by ∑(A). By using the technique of operator block, the extended eigenvalue of upper triangular operator matrices was studied. And more, it is showed that if A≥0 and A is invertible, then ∑(An/m)= (∑(A))n/m, where n,m∈Z, and m≠0.
出处
《纺织高校基础科学学报》
CAS
2008年第1期52-54,60,共4页
Basic Sciences Journal of Textile Universities
基金
国家自然科学基金资助项目(10571113)
关键词
广义特征值
算子矩阵
正算子
extended eigenvalue
operator matrix
positive operator