期刊文献+

四次方程的广义Hyers-Ulam-Rassias稳定性 被引量:2

The generalized Hyers-Ulam-Rassias stability of quartic equations
下载PDF
导出
摘要 用不动点的择一性研究了四次方程的广义Hyers-Ulam-Rassias稳定性.证明了如果映射f:X→Y满足f(0)=0,‖(Df)(x,y)‖≤φ(x,y)(x,y∈X)且■0≤L<1,使得映射x|ψ(x):=φ(x/2,0)满足ψ(x)≤L24ψ(x/2)(x∈X),则存在惟一的四次映射V:X→Y,使得‖f(x)-V(x)‖≤(L/(2(1-L)))ψ(x)(x∈X). The generalized Hyers-Ulam-Rassias stability for quartic equation is investigated by using the fixed point alternative. It is proved that if a mapping f:X→Y satisfies f(0)=0, || (Df)(x,y) || 〈φ(x,y) (arbitary x,y ∈ X) and there exists a constant 0≤L〈1 such that φ(x). =φ(x/2,0)≤L2^4 φ(x/2) ( arbitary x∈ X),then there exists an unique quartic mapping V:X→Y such that|| f(x)-g(x) || ≤(L/(2(1-L))) φ (x) ( arbitary x∈ X).
出处 《纺织高校基础科学学报》 CAS 2008年第1期55-57,共3页 Basic Sciences Journal of Textile Universities
基金 国家自然科学基金资助项目(10571113)
关键词 Hyers-Ulam—Rassias稳定性 四次方程 不动点的择一性 Hyers-Ulam-Rassias stability quartic equation fixed point alternative
  • 相关文献

参考文献12

  • 1ULAM S M. Problems in modern mathematics[M]. Science ed. New York: Wiley, 1960.
  • 2HYERS D H. On the stability of the linear functional equation[J]. Proc Natl Acad Sci, 1941,27:222-224.
  • 3RASSIAS Th M. On the stability of the linear mapping in Banach spaces[J]. Proc Amer Math Soc, 1978,72:297-300.
  • 4ACZEL J, Dhombres J. Functional equations in several variables[M]. Cambridge:Cambridge Univ Press, 1989.
  • 5CZERWIK S. On the stability of the quadratic mapping in normed spaces [J]. Abh Math Sem Univ Hamburg, 1992, 62:59-64.
  • 6JUNG S M. On the Hyers Ulam stability of the functional equations that have the quadratic property[J]. J Math Anal Appl, 1998,222 : 126-137.
  • 7KANNAPPAN Pl. Quadratic functional equation and inner product spaces[J]. Results Math, 1995,27: 368-372.
  • 8SKOF F. Proprieta lacalie e approssimazione di operatori[J]. Rend Sem Mat Fis Milano, 1983,53:113-129.
  • 9CHOLEWA P W. Remarks on the stability of functional equations[J]. Aequationes Math, 1984,27: 76-86.
  • 10JUN K W, KIM H M. The generalized Hyers-Ulam-Rassias stability of a cubic functional equation[J]. J Math Anal Appl, 2002,274 : 867-878.

同被引文献11

  • 1ULAM S M. A Collection of the mathematical prohlems[MJ. New Yorks Inter-Science Press, 1960.
  • 2HYERS D H. On the stability of the linear functional equation[J]. Proc Nat Acad Sci, 1941,27,222-224.
  • 3RASSIAS Th M. On the stability of the linear mappingin Banach spaces[J]. Proc Amer Math Soc,1978,72,297-300.
  • 4PARK C G. Linear derivations on Banach algebras[J]. Nonlinear Functional Analysis and Applications, 2004,9, 359- 368.
  • 5PARK C G. Homomorphisms between C? -algebras , linear * -derivations on a C? -algebra and the Cauchy-Rassiasstabil?ity[J]. Nonlinear Functional Analysis and Applications,2005,10,751-776.
  • 6JUNG S. On Hyers-Ulam-Rassias stability of approximately additive mappings[J].J Math Anal Appl, 1996 ,204, 221- 226.
  • 7GAVRUTA P. A generalization of the Hyers-Ulam-Rassiasstability of approximately additive mappings[J].J Math A?nal Appl,1994,184,431-436.
  • 8GAO Z X,CAO H X,ZHENG W T ,et al, Generalized Hyers-Ulam-Rassias stability of functional inequalities and func?tional equations[J].J Math Inequal,2009,3: 63-77.
  • 9CAD H X,LVJ R,RASSIASJ M. Superstability for generalized module left derivations and generalized module deri?vations on a banach module (I)[J].J of Inequalities and Applications, 2009 , 10.1155/2009/718020,1-10.
  • 10CAD H X,LVJ R,RASSIASJ M. Superstability for generalized module left derivations and generalized module deri?vations on a Banach module(lI)[J].J Pure Appl Math,2009,10, 1-8.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部