摘要
用不动点的择一性研究了四次方程的广义Hyers-Ulam-Rassias稳定性.证明了如果映射f:X→Y满足f(0)=0,‖(Df)(x,y)‖≤φ(x,y)(x,y∈X)且■0≤L<1,使得映射x|ψ(x):=φ(x/2,0)满足ψ(x)≤L24ψ(x/2)(x∈X),则存在惟一的四次映射V:X→Y,使得‖f(x)-V(x)‖≤(L/(2(1-L)))ψ(x)(x∈X).
The generalized Hyers-Ulam-Rassias stability for quartic equation is investigated by using the fixed point alternative. It is proved that if a mapping f:X→Y satisfies f(0)=0, || (Df)(x,y) || 〈φ(x,y) (arbitary x,y ∈ X) and there exists a constant 0≤L〈1 such that φ(x). =φ(x/2,0)≤L2^4 φ(x/2) ( arbitary x∈ X),then there exists an unique quartic mapping V:X→Y such that|| f(x)-g(x) || ≤(L/(2(1-L))) φ (x) ( arbitary x∈ X).
出处
《纺织高校基础科学学报》
CAS
2008年第1期55-57,共3页
Basic Sciences Journal of Textile Universities
基金
国家自然科学基金资助项目(10571113)