期刊文献+

应用修正的k-ε模型研究超声速H2/Air燃烧 被引量:3

Numerical simulation of supersonic H_2/air combustion applingmodified k-ε turbulence model
下载PDF
导出
摘要 为了研究超声速燃烧中流体可压缩性的影响,对标准k-ε湍流模型进行可压缩性修正(包括结构可压缩性修正和膨胀可压缩性修正两部分)。分别应用标准k-ε模型、修正的k-ε模型和雷诺应力模型(RSM),考虑氢气/空气详细化学反应机理(GR I-M ech 2.11机理,10组分,28基元反应),数值模拟有壁面限制的超声速混合层冷态及热态流场。结果表明:壁面和燃烧对湍流影响都很大;修正模型对冷态以及燃烧场的预测结果优于其它两个;修正模型预测的混合层厚度更薄,燃烧区域更窄,与实验结果吻合地更好。 To study compressibility effect in supersonic combustion, three additional terms (including structured compressibility and dilatational compressibility correction terms) were proposed to improve the standard k-ε turbulence model predictions. Combined comprehensive kinetics mechanics of H2/air (GRi-Mech 2.11,10 components, 28 reactions) , standard k-ε model, modified k-ε model and Reynolds Stress Model (RSM) were examined by simulations of wall bounded supersonic mixing layers under nonrective and reactive conditions. Comparisons of the results of the three models were made with experi- mental measurements. Both solid wall and combustion affect turbulence notably. Modified turbulence model gives better predictions than the other two models. Also the new model predicts compressed mixing layers and a narrow reaction zone, which are closer to measurements.
出处 《推进技术》 EI CAS CSCD 北大核心 2008年第2期158-162,共5页 Journal of Propulsion Technology
基金 国家自然科学基金(50506028)
关键词 可压缩湍流 湍流模型 超音速混合层 燃烧 数值仿真 Compressible turbulence * Turbulence model Supersonic mixing layers Combustion Numerical simulation
  • 相关文献

参考文献9

  • 1Venkata S Krishnamurty, Wei Shyy. Study of compressibility modifications to the κ-ε turbulence model [ J ]. Phys. Fluids, 1997, 9 (9).
  • 2Heinz S. A model for the reduction of the turbulent energy redistribution by compressibility [ J ]. Phys. Fluids, 2003, 15(11).
  • 3陈方,陈立红,张新宇.壁面凹腔强化H_2超声速燃烧的数值模拟[J].推进技术,2006,27(6):563-567. 被引量:2
  • 4李丽,叶中元,刘兴洲.壁龛稳焰超声速燃烧室流场的数值模拟[J].推进技术,2003,24(6):521-523. 被引量:12
  • 5Pantano C, Sarkar S. A study of compressibility effects in the high speed turbulent shear layer using direct simulations [J]. J. Fluid Mech. , 2002, 451(1).
  • 6韩省思,叶桃红,朱旻明,陈义良.κ—ε湍流模型可压缩性修正在超音速混合层中的应用研究[J].工程热物理学报,2007,28(6):1053-1055. 被引量:7
  • 7Marshall C B, Kurkov A P. Analytical and experimental study of supersonic combustion of Hydrogen in a vitiated air stream [R]. NASA TM X 2828, 1973.
  • 8Parent B, Sislian J P. Validation of Wilcox κ-ε model for flows characteristic to hypersonic airbreathing propulsion [J]. AIAA Journal, 2004, 42 (2).
  • 9Luo K H. Combustion effects on turbulence in a partially premixed supersonic diffusion flame [ J]. Combustion and Flame, 1999, 119(4).

二级参考文献18

  • 1刘小勇.冲压发动机双模态燃烧的理论与试验研究.中国国防科学技术报告[R].,2000..
  • 2刘陵 刘敬华 张榛 等.超声速燃烧和超声速燃烧冲压发动机[M].西安:西北工业大学出版社,1993..
  • 3Adela B Y,Ronald K H.Cavity flame-holders for ignition and flame stabilization in scramjets:An overview[J].J.of Propulsion and Power,2001,17 (4).
  • 4Roudakov A S,Schikhmann Y,Semenov V,et al.Flight testing an axisymmetric scramjet-russian recent advances[R].IAF Paper,S.4.485,1993.
  • 5Vinagradov V,Kobigsky S A,Petrov M D.Experimental investigation of kerosene fuel combustion in supersonic flow[J].J.of Propulsion and Power,1995,11 (4).
  • 6Ortweth P,Mathur A,Vinogradov V,et al.Experimental and numerical investigation of hydrogen and ethylene combustion in a Mach 3-5 channel with a single injector[R].AIAA 96-3245.
  • 7Owens M G,Tehranian S,Segal C,et al.Flame-holding configurations for kerosene combustion in a mach 1.8 airflow[J].J.of Propulsion and Power,1998 14 (4).
  • 8ZHANG Xin-yu,et al.Development of a facility for model scramjet testing[R].AIAA 2001-1857.
  • 9陈方,张新宇.壁面凹腔强化H2超声速燃烧的数值模拟[C].中国力学学术大会2005(CCTAM2005).
  • 10Davis D L,Browersox R D W.Computational fluid dynamics analysis of cavity flame holders for scramjets[R].AIAA 97-3270.

共引文献17

同被引文献47

  • 1张涵信,陈坚强,高树椿.H_2/O_2燃烧的超声速非平衡流动的数值模拟[J].宇航学报,1994,15(2):14-23. 被引量:12
  • 2LELE S K. Compressibility effects on turbulence[J]. Ann. Review of Fluid Mech., 1994, 26(1): 211-254.
  • 3PANTANO C, SARKAR S. A Study of compressibility effects in the high speed turbulent shear layer using direct simulation[J]. J. Fluid Mech., 2002, 451(1): 329-371.
  • 4SARKAR S. The pressure dilatation correlation in compressible flows [J]. Phys. Fluids A, 1992, 4 (12) : 2674-2682.
  • 5SARKAR S. The stabilizing effect of compressibility in turbulent shear flow[J]. J. Fluid Mech. , 1995, 282 (1):163-186.
  • 6DURBIN P A. On the k-3 stagnation point anomaly[J].Int, J. Heat and Fluid Flow, 1996, 17(1): 89-90.
  • 7CHANG H P and SEUNG O P. On the limiter of two equation turbulence models[J]. Int. J. of computational Fluid Dynamics, 2005, 19(1): 79-86.
  • 8SINHA K, MAHESH K, CANDLER G V. Modeling shock unsteadiness in shock/turbulence interaction[J]. Phys. Fluids, 2003, 15(8): 2290-2297.
  • 9HEINZ S. A model for the reduction of the turbulent energy redistribution by compressibility [J].Phys. Fluids, 2003, 15(11): 3580-3583.
  • 10SPAID F W, ZUKOSKI E E. A study of the interaction of gaseous jets from transverse slots with supersonic external flows[J]. AIAA J., 1968, 6(2):205-212.

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部