期刊文献+

PCR介导观赏向日葵DFR基因改造及其真核表达载体构建研究初报 被引量:1

PCR-mediated modification of DFR gene from ornamental sunflower and construction of the gene′s plant expression vector
下载PDF
导出
摘要 二氢黄酮醇-4-还原酶(DFR)是花色素苷代谢途径中的关键酶之一.本研究利用PCR技术将观赏向日葵DFR底物结合区敲除,并将该区域中134位保守氨基酸天冬酰胺定点突变为天门冬氨酸和亮氨酸,最后获得已敲除底物结合区的基因KODFR以及定点突变的基因N134D和N134L,并成功构建KODFR、N134D和N134L基因的植物表达载体pCAM-KODFR、pCAM-N134D和pCAM-N134L. Dihydroflavonol 4-reductase (DFR) catalyzes the last common step in the anthocyanin biosynthesis pathway. By using PCR, substrate binding region of DFR from ornamental sunflower (Helianthus annuus) was knocked out, and - 134 conserved amino acid residue asparagine was mutated into aspartate or leucine. KODFR, mutated N134D and N134L were successfully amplified. Plant expression vector pCAM-KODFR, pCAM-N134D and pCAM-N134L were also successfully constructed, which will be used for gene transformation.
出处 《福建农林大学学报(自然科学版)》 CSCD 北大核心 2008年第2期166-169,共4页 Journal of Fujian Agriculture and Forestry University:Natural Science Edition
基金 福建省自然科学基金资助项目(2007J0055) 福建省教育厅资助项目(JB04307)
关键词 观赏向日葵 PCR 二氢黄酮醇-4-还原酶 底物结合位点突变 载体构建 ornamental sunflower PCR dihydroflavonol 4-reductase mutation of substrate binding region vector construction
  • 相关文献

参考文献10

  • 1KOSE R E, QUATTOCCHIO F, MOL J N M. The flavonoid biosynthetic pathway in plants: function and evolution [ J ]. Bioessays, 1994,16(2) :123 - 132.
  • 2HOLTON T A, CORNISH E C. Genetics and biochemistry of anthocyanin biosynthesis [J]. Plant Cell, 1995,7(7) :1071 - 1083.
  • 3JOHNSON E T, RYU S, YI H, et al. Alteration of a single amino acid changes the substrate specificity of dihydroflavonol 4- reductase [J]. Plant J, 2001,25(3) :325 -333.
  • 4PETERS D J, CONSTABEL P C. Molecular analysis of herbivore-induced condensed tannin synthesis : cloning and expression of dihydroflavonol reductase from trembhng aspen ( Populus tremuloides) [ J ]. Plant J, 2002,32 (5) :701 - 712.
  • 5XIE D Y, JACKSON L A, COOPER J D, et al. Molecular and biochemical analysis of two cDNA clones encoding dihydroflavonol 4-reductase from Medicago truncatula [ J ]. Plant Physiol, 2004,134 ( 3 ) :979 - 994.
  • 6PETIT P, GRANIER T, ESTAINTOT B L, et al. Crystal structure of grape dihydroflavonol 4-reductase, a key enzyme in flavonoid biosynthesis [ J ]. J Mol Biol, 2007,368 (5) : 1345 - 1357.
  • 7张剑亮,周以飞,潘大仁,陈桂洋.观赏向日葵的适应性研究[J].福建农林大学学报(自然科学版),2004,33(4):419-422. 被引量:23
  • 8ATLAGIC J, SECEROV-FISER V, MARINKOVIC R. Interspeeifie hybridization and eytogenetie studies in ornamental sunflower breeding [J]. Aust J Exp Agr, 2005,45(1) :93 -97.
  • 9刘公社,徐夙侠,刘小丽.雄性不育系“NEWFREE”的特点及其在观赏向日葵中的利用[J].作物学报,2006,32(11):1752-1755. 被引量:3
  • 10萨姆布鲁克J,拉塞尔DW.分子克隆实验指南[M].3版.北京:科学出版社,2003:628-633.

二级参考文献17

  • 1吴红正 王移山 房师梅.以色列产鲜切花向日葵品系及栽培技术[J].西南园艺,2000,28(3):34-35.
  • 2SHNEITERAA MIUERJF.向日葵生育阶段的描述[J].作物科学,1981,21(6):901-903.
  • 3Kaul M. Male Sterility in Higher Plants. Heidelberg, Germany:Springer-Verlag, 1988, Vol 10
  • 4Bthattacharjee B, Sane A P, Gupta H S. Transfer of wild abortive cytoplasmic male sterility through protoplasfusion in rice. Mol Breed.1999, 5:319-327
  • 5ZouJ-C(邹吉承).Study and application of cofunction of nuclear and cytoplasm in wheat[J].辽宁农业科学,2000,1:33-33.
  • 6Leclercq P. Une sterilite male cytoplasmique chez le tournesol. Ann Amelior Plantes, 1969, 19:99-106
  • 7Serieys H. Identification, study and utilization in breeding programs of new CMS sources. In: FAO Progress Report. Helia 19, 1996(specialissue) : 144-160
  • 8Ullstrup A J. The impacts of the southern corn leaf blight epidemics of 1970-1971. Annu Rev Phytopathol, 1972, 10:37-50
  • 9Serieys H. Identification, study and utilization in breeding programs of new CMS sources. In: FAO Subnetwork. Proc. Sunflower subnetwork progress report. 7-9 Oct 2002. FAO, Rome, Italy
  • 10Jan C C. A new CMS source from Helianthus gigaraeus and its fertility restoration genes from interspecific amphiploids. In: Proc. 16^th International Sunflower Conference, Fargo, ND USA, 2004. pp 709-713

共引文献39

同被引文献13

  • 1Farzad M, Griesbach R, Hammond J, Weiss M R, Elmendorf H G. 2003. Differential expression of three anthocyanin biosynthetic genes in a color-changing flower, Viola cornuta cv. Yesterday, Today and Tomorrow. Plant Sci, 165:1333 -1342.
  • 2Forkmann G, Dangelmayr B. 1980. Genetic control of isomerase activity in flowers of Dianthus caryophyllus. Biochem Genetics, 18:5 -6.
  • 3Given N K, Venis M A, Grierson D. 1998. Phenylalanlne ammonia-lyase activity and anthocyanin synthesis in ripening strawberry fruit. J Plant Physiol, 133 : 25 - 30.
  • 4Hohon T A, Cornish E C. 1995. Genetics and biochemistry of anthocyanin biosynthesis. Plant Cell, 7 : 1071 - 1083.
  • 5Inagaki Y, Johzuka-Hisatomi Y, Mori T, Takahashi S, Hayakawa Y, Peyacholnagul S, Ozeki Y, Iida S. 1999. Genomic organization of the genes encoding dihydroflavonol 4-reduetase for flower pigmentation in the Japanese and common morning glories. Gene, 226 : 181 - 188.
  • 6Katz A, Weiss D. 1998. Photocontrol of chs gene expression in petunia flowers. Plant Physiol, 102:210 -216.
  • 7Lu Y, Rausher M D. 2003. Evolutionary rate variation in anthoeyanin pathway genes. Mol Biol Evol, 20:1844 -1853.
  • 8Martin C, Gerats T. 1993. Control of pigment biosynthesis genes during petal development. Plant Cell, 5:1253 -1264.
  • 9Rausher M D, Miller R E, Tiffin P. 1999. Patterns of evolutionmy tale Variation among genes of the anthocyanin biosynthetic pathway. Mol Biol Evol, 16:266-274.
  • 10Sakuda M. 2000. Transcriptional control of chalcone synthase by environmental stimuli. J Plant Res, 113:327 -333.

引证文献1

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部