期刊文献+

BM迭代算法的循环架构设计及实现 被引量:1

Cycle architecture design of BM iterative algorithm and its implementation
下载PDF
导出
摘要 BCH码的译码问题主要归结为一个关键方程的解决,即错误位置多项式的求解,BM迭代算法自1966年由Berlekamp-Massey提出以来经过不断改进,已经成为解决这一问题的成熟算法。提出了一种适合硬件实现的BM迭代算法的循环架构设计,并在此架构下分别实现了基于BM迭代算法和其简化算法的二元BCH(15,5)的FPGA译码器,显示出这一循环架构易于模块移植的优点。仿真结果表明:码组中任意不大于3 bit的随机错误都可以给予纠正。 Solving the key equation is the key for the decoding of BCH codes, namely finding error location polynomials, Berlekamp-Massey (BM) iterative algorithm has been improved continuously since it has been proposed in 1966, and it is a mature algorithm for solving this problem. A cycle architecture of BM iterative algorithm is improved for hardware implementation, and the decoder FPGA implementation based on BM iterative algorithm and its simplified one for a binary BCH ( 15,5 ) are investigated under the architecture. The excellent quality of module-reused by the architecture is shown, Simulation results indicate that three or less than three error bits can be corrected by the hardware implementation.
出处 《重庆邮电大学学报(自然科学版)》 2008年第2期175-178,共4页 Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition)
基金 国家自然科学基金项目(60272005) 教育部新世纪优秀人才支持计划(NCE-04-0601)
关键词 BM迭代算法 现场可编程逻辑阵列 循环架构设计 BM iterative algorithm field programmable gate array (FPGA) cycle architecture design
  • 相关文献

参考文献1

二级参考文献10

  • 1胡庆生,王志功,张军,肖洁.2.5Gb/s Reed-Solomon译码器的VLSI优化实现[J].电路与系统学报,2005,10(2):57-65. 被引量:3
  • 2肖洁,王志功,胡庆生,张军.10Gb/s Reed-Solomon(255,239)解码器的设计[J].微电子学与计算机,2005,22(8):39-43. 被引量:3
  • 3HANHO L. High-speed VLSI architecture for parallel reed-solomon decoder[J]. IEEE Trans. on VLSI,2003, 11 (2):288-294.
  • 4HSU Huai-yi, YEO Jih-chiang, WU An-yeu. Areaefficient VLSI design of Reed-Solomon decoder for 10GBase-LX4 optical communication systems, Advanced System Integrated Circuits 2004[C]// Proceedings of 2004 IEEE Asia-Pacific Conference on 4-5 Aug. [S.l.]:IEEE Press,2004 : 314-317
  • 5SONG Lei-lei, YU Meng-lin, SHAFFER M S. 10-and 40Gb/s Forward Error Correction Devices for Optical Communications[J]. IEEE Journal of Solid-State Circuits, 2002,37(11):1 565-1 572.
  • 6REED I S, SHIH M T, TRUONG T K. VLSI design of inverse-free Berlekamp-Massey algorithm[C]// Proceedings of Computers and Digital Techniques. [S.l.]:IEEE Press, 1991,138(9) :295-298.
  • 7SARWATE D V, SHANBHAG N R. High-speed architectures for Reed-Solomon decoders[J]. Very Large Scale Integration (VLSI) Systems, 2001,9 (5) : 641-655.
  • 8Reyhani-Masoleh A, HASAN M A. Low complexity bit parallel architectures for polynomial basis multiplication over GF(2^m)[J]. Computers,2004,53(8):945-959.
  • 9MOON T K. Error correction coding-mathematical methods and algorithms[D]. Hoboken:John Wiley & Sons,2005.
  • 10DINH A V, BOLTON R J, MASON R. A low latency architecture for computing multiplicative inverses and divisions in GF(2^m)[C]// Circuits and Systems IhAnalog and Digital Signal Processing. [S.l.]:IEEE Press,2001, 48(8) :789-793.

共引文献1

同被引文献13

  • 1GOLAY M J E. Notes on digital coding[ J ]. Proceedings of The IEEE PIEEE, 1949, 37: 637.
  • 2LINTC, TRUONGT K, SU W K, et al. Decoding of the(24, 12, 8) extended golay code up to tour errors[J]. Communications IET, 2009, 2(3): 232-238.
  • 3REED I S, YIN X, TRUONG T K, et al. Decoding the (24, 12, 8)Golaycode[J]. ProcIEE, 1990, 137(3): 202 -206.
  • 4BOYARINOV I, MARTIN I, HONARY B. High-speed decoding of extended Golay code[ J ]. IEE Proc Communications, 2000, 147(6) : 333-336.
  • 5MCELIECE R J. The Theory of Information [M]. MA: Addision Wesley, 1977.
  • 6ELlA M. Algebraic decoding of the (23, 12, 7 ) Golay code[ J]. IEEE Trans Inf Theory, 1987, IT-33 ( 1 ) : 150-151.
  • 7KASAMI T. A decoding procedure for nmhiple error correcting cyclic codes[ J]. IEEE. Trans Inf Theory, 1964, IT-10(2) : 134-138.
  • 8CHASE D. A Class of Algorithms tor Decoding Block Codes with Channel Measurement Information [ J]. 1EEE Tran Inf Theory, 1972, IT-18: 170-182.
  • 9LINShu,COSTELLODanielJ.ErrorControlCoding[M].晏坚,译.北京:机械工业出版社,2007:262-272.
  • 10FORNEY G D. Generalized Minimum Distance Decoding [J]. IEEE Trans Inf Theory, 1966, IT-12: 125-131.

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部