期刊文献+

基于MDI与进化计算相结合的HMM训练方法

HMM training method based on MDI and evolutionary computation
下载PDF
导出
摘要 MDI为HMM训练的优化准则之一,但传统的MDI是基于局部最优求解的,所得的解也是一个局部最优解,而进化计算则是基于全局搜索的。为此,提出了将MDI及进化计算相结合来训练HMM的方法。各个模型用个体来表示,个体的适应值采用模型的最小差别信息。实验结果表明。 Minimum discrimination information (MDI) is one of the optimization criteria for HMM training. With traditional MDI training method, it can only gain a local optimum solution for it is based on local search, but evolutionary computation is based on global search. Hence, a new training method is proposed based on evolutionary computation and MDI. Each individual in evolutionary computation represents a HMM, while the fitness value of each individual represents the minimum discrimination information. The experimental results indicate that the system's recognition rate trained with the proposed method is superior to the one trained with traditional training method.
作者 曹玉东
出处 《重庆邮电大学学报(自然科学版)》 2008年第2期236-240,共5页 Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition)
关键词 最小差别信息 进化计算 隐含马尔柯夫模型 语音识别 minimum discrimination information (MDI) evolutionary computation hidden Markov model (HMM) speech recognition
  • 相关文献

参考文献11

  • 1[1]GALES M J F.Cluster adaptive training of hidden Markov models[J].IEEE transactions on speech and audio pro-cessing,2000,8(4):417-432.
  • 2[2]VENKATARAMANAN L,KUC R,SIGWORTH F J.Iden-tification of hidden Markov models for ion channel cur-rents-Part Ⅲ:Bandlimited Sampled Data[J].IEEE transactions on signal processing,2000,48(2):376-398.
  • 3[3]MARK T,GEORGE K.Modeling long-term persistence in hydroclimatie time series using a hidden state Markov model[J].Water resources research,2000,36(11):3301-3324.
  • 4[4]DUPRE Xavier,AUGUSTIN Emmanuel.Hidden Markov Models for Couples of Letters Applied to Handwriting Recognition:17th International Conference on Pattern Recognition[C].Cambridge,UK,Cambridge:[s.n.],2004.
  • 5[5]RICHARD O D,PETER E H,DAVID G S.Pattern Classi-fication[M].李宏东,姚天翔,译.北京:机械工业出版社,2003,105-115.
  • 6[6]RICHARD I A D,BRIAN C L,TERRY C.Improved Esti-mation of Hidden Markov Model Parameters from Multiple Observation Sequences:16th International Conference on Pattern Recognition Quebec City,Canada[C].Quebec:[s.n.],2002.
  • 7[7]JUANG B H,RABINER L R.The segmental k-means al-gorithm for estimating the parameters of hidden Markov models[J].IEEE Trans.Acoustics,Speech,Signal Pro-cessing,1990,38(9):1639-1641.
  • 8[8]DUGAD R,DESAI U B.A tutorial on hidden Markov models[R].Tech Rep:Spann-96.1,Bombay:Indian Institute of Technology,1996.
  • 9[9]EPHRAIM Y,DEMBO A.A Minimum Discrimination In-formation Approach for Hidden Markov Modeling[J].IEEE Trans.On Information Theory,1989,35(5):1001-1012.
  • 10[10]LAWRENCE R Rabiner.A tutorial on hidden Markov models and selected applications in speech recognition[J].Proceedings of IEEE,1989,77 (2):257-286.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部