期刊文献+

多层次-跨尺度物理中并行DVM-DAC算法 被引量:1

A Study of Parallel DVM-DAC Algorithm in Multiscale Physics
下载PDF
导出
摘要 多尺度现象及相关理论方法是复杂物质系统研究中重要的科学问题.单一的量子力学或分子动力学方法无法解释多尺度体系中存在的现象.第一原理离散变分线性标度(DVM-DAC)算法是一种有效的大尺度体系计算方法.它采用分而治之方案,获得了O(n)的计算复杂性.但由于需要求解大量的特征方程,实现中存在严重的计算瓶颈.发展了一种并行DVM-DAC算法并付诸实现,有效地解决了原有算法的计算瓶颈问题.测试结果表明,并行DVM-DAC算法具有很好的可扩展性,并成功完成104碳纳米管原子体系的计算,为多尺度体系研究提供重要工具. The phenomenon of multiscale and the corresponding theoretical model is an important scientific problem in the complex system.It is difficult for the traditional theory to describe the nature of spanning scale and multilevel problem.Being an efficient model for large scale system,the DVM-DAC algorithm has the O(n) linear scaling character originated from using the divide-and-conquer theory.However,the solving of eigenvalue equations brings serious computing bottleneck.In this paper,a parallel DVM-DAC method is presented to solve this problem.The performed results demonstrate that the parallel DVM-DAC algorithm which has succeeded in processing the carbon nanotube system with 104 atoms,and has good scalability.It can be predicted that the parallel DVM-DAC method is a important tool for the study of multiscale physics.
出处 《计算机研究与发展》 EI CSCD 北大核心 2007年第10期1667-1672,共6页 Journal of Computer Research and Development
基金 国家"九七三"重点基础研究发展规划基金项目(2006CB05102)
关键词 材料设计 多尺度现象 第一原理离散变分线性标度 分而治之理论 并行计算 material design multiscale phenomenon DVM-DAC divide-and-conquer theory parallel computing
  • 相关文献

参考文献9

  • 1C Y Wang,X Zhang.Multiscale modeling and related hybrid approaches[J].Current Opinion in Solid State & Material Science,2006,(10):2-14
  • 2G S Painter,D E Ellis.Electronic band structure and optical properties of graphite from a variational approach[J].Physics Review B,1970,1:4747-4752
  • 3B Delley,D E Ellis.Efficient and accurate expansion methods for molecules in local density models[J].Journal of Chemical Physics,1982,76(2):1949-1960
  • 4D Guenzburger,D E Ellis.Magnetism of Fe impurities in alkaline-earth metals and Al[J].Physics Review B,1992,45(1):285-294
  • 5W T Yang.Direct calculation of electron density in density functional theory[J].Physics Review Letter,1991,66(3):1438-1441
  • 6B Delley.An all-electron numerical method for solving the local density functional for polyatomic molecules[J].Journal of Chemical Physics,1990,92(1):508-517
  • 7B Delley.Analytic energy derivatives in the numerical local-density-functional approach[J].Journal of Chemical Physics,1991,94(6):7245-7250
  • 8G Kresse,J Furthmuller.Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J].Computational Materials Science,1996,6(1):15-50
  • 9D Vanderbilt.Soft self-consistent pseudopotentials in a generalized eigenvalue formalism[J].Physics Review B,1990,41(11):7892-7895

同被引文献26

  • 1曹莉霞,王崇愚.α-Fe裂纹的分子动力学研究[J].物理学报,2007,56(1):413-422. 被引量:20
  • 2卡恩 R W,哈森 P,克雷默 E J.材料科学与技术丛书,第6卷,材料的塑性变形与断裂[M].北京:科学出版社.1998.
  • 3Pantelides S T,Maroudas D,Laks D B. Defects in heterogeneous solids - from mlcrophysics to macrophysics [J]. Mater Sci Forum,1994,143:1.
  • 4Rice J R. Dislocation nucleation from a crack tip: an analysis based on the peierls concept [J]. J Mech Phys Solids, 1992,40 (2): 239.
  • 5Choi H C, Schwartzman A F,Kim K S. Experimental deformation mechanics of materials from their near-atomic-resolution defect images[J]. Mat Res Soc Syrup Proc,1992,239: 419.
  • 6Cosandey F,Chan S W,Stadelmann P. Atomic structure and energy Σ5 tilt boundaries in Gold [J]. Metall Trans, 1990, 21: 2299.
  • 7Daw M S,Baskes M I. Semiempirical,quantum mechanical calculation of hydrogen embrittlement in metals [J]. Phys Rev Lett, 1983,50:1285.
  • 8Daw M S, Baskes M I. Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals [J]. Phys Rev B,1984,29:6443.
  • 9Verlet L. Computer "Experiments" on Classical Fluids. I. Thermodynamical properties of lennard-Jones molecules [J]. Phys Rev, 1963,159:98.
  • 10deCelis B,Argon A S,Yip S. Molecular dynamics simulation of crack tip processes in alpha-iron and copper [J]. J Appl Phys, 1983,54:4864.

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部