期刊文献+

广义Hermitian特征问题标准化转换的有效并行块算法 被引量:1

Efficient Parallel Blocked Algorithms for Generalized Hermitian Eigenproblem
下载PDF
导出
摘要 广义Hermitian特征问题并行求解器的性能依赖于所选择的并行算法和矩阵的分布策略等诸多方面.基于块存储和快算法策略,提出了一个新的标准化转化的并行算法,该并行算法将Cholesky分解结合到广义特征问题标准化转换中,降低了已有并行算法的通信开销,并增加了算法的并行性.新算法可显著改善已有并行算法的性能和可扩展性.另外给出了一个有效求解具有多个右端项的三角矩阵方程AX=B的并行块算法.通过自主开发的特征问题并行软件包PSEPS的测试结果表明,并行算法比传统的并行算法快大约1倍,并具有较好的可扩展性. The performance of a generalized eigenproblem solver relies on many factors,which include selected parallel algorithms and matrix mapping strategy.A new parallelization is presented,which combines the Cholesky into the transformation from generalized to standard form.By reducing the communication cost and extending the parallelism,the new algorithm can obviously improve the performance and scalability of the original algorithm.Moreover,an efficient parallel algorithm is proposed to compute a triangular AX=B with multiple right hand sides.From the tests using the parallel software PSEPS,the speed of the parallel algorithm is about two times that of the classical parallel algorithms,and it has better performance and scalability than the classical parallel algorithms.
出处 《计算机研究与发展》 EI CSCD 北大核心 2007年第10期1724-1732,共9页 Journal of Computer Research and Development
基金 国家自然科学基金项目(60533020 60673064) 国家"八六三"高技术研究发展计划基金项目(2006AA01A116 2006AA01A116) 国家"九七三"重点基础研究发展规划基金项目(2005CB321702) 国家科技基础条件平台建设基金项目(2005DKA64002)
关键词 特征问题 块算法 CHOLESKY分解 并行计算 可扩展性 eigenproblem blocked algorithm Cholesky decomposition parallel computing scalability
  • 相关文献

参考文献8

  • 1L Blackford,J Choi,A Cleary,et al.ScaLAPACK Users's Guide[M].Philadelphia:Society for Industrial & Applied Mathematics,1997
  • 2B A Hendrickson,D E Womble.The torus-wrap mapping for dense matrix calculation on massively parallel computers[J].SIAM Journal on Science Computing,1994,15(5):1201 -1226
  • 3B Hendrickson,E Jessup,C Smith.Toward an efficient parallel eigensolver for dense symmetric matrices[J].SIAM Journal on Science Computing,1999,20(3):1132-1154
  • 4T Katagiri,Y Kanada.An efficient implementation of parallel eigenvalue computation for massively parallel processing[J].Parallel Computing,2001,27(14):1831-1845
  • 5C Bischof,M Marques,X Sun.Parallel band reduction and tridiagonalization[C].The 6th SIAM Conf on Parallel Processing for Scientific Computing,Minneapolis,Minnesota,USA,2006
  • 6B Lang.A parallel algorithm for reducing symmetric banded matrices to tridiagonal form[J].SIAM Journal on Science Computing,2004,14(2):1320-1338
  • 7L Kaufman,V Hernandez,A Tomas,et al.A scalable and flexible toolkit for the solution of eigenvalue problems[J].ACM Trans on Mathematical Software,2005,31(3):351-362
  • 8Cao Xinqin,Chi Xuebin,Gu Ning.Parallel solving symmetric eigenproblems[C].The 5th Int'l Conf on Algorithms and Architectures for Parallel Processing,Beijing,2002

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部