期刊文献+

改进的PSVM及其在非平衡数据分类中的应用 被引量:2

Modified PSVM and Its Application in Unbalanced Data Classification
下载PDF
导出
摘要 标准近似支持向量机(PSVM)没有考虑非平衡分布数据的分类问题,为此,在PSVM的基础上,将优化问题中的惩罚因子由数值变更为一个对角阵,提出了一种改进的PSVM算法。该方法利用引入的对角阵对正负样本分别分配不同的惩罚因子,由于其任意性,使得该算法可以解决由多种因素引起的分布不平衡的分类问题,稳健性较好。利用实值免疫克隆算法实现了模型参数的自动选择,进一步提高了算法的泛化性能。实验结果表明新算法对于处理分布不平衡数据的分类问题相当有效。 A modified proximal support vector machine is presented for the case of unbalanced data classification in many applications. The algorithm assigns the different penalty coefficients to the positive and negative samples respectively by adding a new diagonal matrix in the primal optimization problem. And further the decision function is obtained. In addition, the real-coded immune clone algorithm is employed to select the global optimal parameters to get the high generalization performance. The experimental results on the UCI and the real radar datasets (HRRP) illustrate the effectiveness of the proposed method.
出处 《计算机工程》 CAS CSCD 北大核心 2007年第24期191-193,共3页 Computer Engineering
关键词 近似支持向量机 非平衡数据 实值免疫克隆算法 雷达一维距离像 Proximal SVM (PSVM) unbalanced data real-coded immune clone algorithm real radar datasets (HRRP)
  • 相关文献

参考文献13

  • 1Vapnik V N.The Nature of Statistical Learning Theory[M].New York:Springer,2000.
  • 2Cortes C,Vapnik V N.Support Vector Networks[J].Machine Learning,1995,20(1):273-297.
  • 3Drucker H,Burges C J C,Kaufman L.Support Vector Regression Machines[C]//Advances in Neural Information Processing Systems.Cambridge:MIT Press,1997:155-161.
  • 4Suykens J A K,Vandewalle J.Least Squares Support Vector Machines[J].Neural Processing Letters,1999,9(3):293-300.
  • 5Mangasarian O L.Generalized Support Vector Machines[R].Computer Sciences Department,University of Wisconsin,2000.
  • 6Fung G,Mangasarian O L.Proximal Support Vector Machine Classifiers[R].Wisconsin:University of Wisconsin,2001.
  • 7Agarwal D K.Shrinkage Estimator Generalizations of Proximal Support Vector Machines[C]//Proc.of the 8th ACM International Conference on Knowledge Discovery and Data Mining,Edmonton,Alberta.Canada:ACM Press,2002:173-182.
  • 8Morik K,Brockhausen P,Joachims T.Combing Statistical Learning with a Knowledge-based Approach:A Case Study in Intensive Care Monitoring[C]//Proc.of the 16th International Conference on Machine Learning.San Mateo,Canada:Morgan Kaufman Publishers,1999:268-277.
  • 9Fung G,Mangasarian O L.Multicategory Proximal Support Vector Machine Classifier[J].Machine Learning,2005,10(59):77-97.
  • 10Golub G H,VanLoan C C.Matrix Computations[M].Baltimore,Maryland:The John Hopkins University Press,1996.

共引文献1

同被引文献23

引证文献2

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部